Cho a ,b thuộc N* biết a,b > 2
Chứng tỏ a + b < a x b
Cho biết
\(\dfrac{1}{a^2}\)+\(\dfrac{1}{b^2}\)+\(\dfrac{1}{c^2}\)=2
\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=2
Chứng minh a+b+c=abc
Ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=1a^2+1b^2+1c^2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(=2^2=2=2+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
\(=\dfrac{c}{abc}+\dfrac{a}{abc}+\dfrac{b}{abc}=\dfrac{abc}{abc}\)
\(=a+b+c\)
\(=abc\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\\ \Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\\ \Rightarrow\dfrac{a+b+c}{abc}=1\\ \Rightarrow a+b+c=abc\left(dpcm\right)\)
1tìm n thuộc N* để
a 6 chia hết (n+1)
b(n+4) chia hết (n-1)
c(n+6) chia hết (n-1)
d(4n+3) + (2n-6)
2chứng tỏ rằng
a tổng của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
b tổng của 4 số tự nhiên liên tiếp là 1 một số không chia hết cho 4
cho 4 số dương thoả mãn a,b,c,d,biết a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
Cho A,B thuộc N khác 0. biết A > 2: B >2 chứng tỏ rằng A + B < A .B
Xét hiệu A + B - A.B = - (A - 1)(B - 1) + 1
Mà A - 1 > 1; B - 1 >1 => (A - 1)(B - 1) >1 => - (A - 1)(B - 1) < -1
=> - (A - 1)(B - 1) + 1 <0
=> A + B - A.B <0
Hay A + B < A.B
1)Tìm x thuộc N để: 3n + 10 chia hết cho n+2
2) Tìm a,b thuộc N biết: a+b = 96 và ƯCLN(a,b) = 12
3) Chứng tỏ số 11112222 là tích của hai số tự nhiên liên tiếp.
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không
1. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.