Cho tam giác ABC vuông tại A. Có ab=12 , AC=12 căn bậc hai của 3 . Tính BC và góc B và góc C
cho tam giác abc vuông tại a có ab =3 cm bc =căn bậc 2 của 18 tính góc b và góc c
Tam giác ABC vuông tại A có:
\(cos\widehat{B}=\frac{AB}{BC}=\frac{3}{\sqrt{18}}=\frac{\sqrt{2}}{2}\)
=> \(\widehat{B}=45^o\)
mà \(\widehat{B}+\widehat{C}=90^o\)(tam giác ABC vuông tại A)
=> \(\widehat{C}=90^o-\widehat{B}=90^o-45^o=45^o\)
Vậy...
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{B}=90^0-\widehat{C}=90^0-52^0\)
hay \(\widehat{B}=38^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin\widehat{ACB}\)
\(\Leftrightarrow AB=12\cdot\sin52^0\)
hay \(AB\simeq9.46cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-\left(9.46\right)^2=54.5084\)
hay \(AC\simeq7.38cm\)
Vậy: \(\widehat{B}=38^0\); \(AB\simeq9.46cm\); \(AC\simeq7.38cm\)
Bài 1: Cho tam giác ABC vuông tại A, biết \(tgB=\frac{4}{3}\)và BC = 10. Tính AB, AC.
Bài 2: Cho tam giác ABC cân tại A, AB=AC=17, BC=16. Tính đường cao AH và góc A, góc B của tam giác ABC.
Bài 3: Cho tam giác ABC có \(\widehat{B}=60\) ,các hình chiếu vuông góc của AB và AC lên BC theo thứ tự bằng 12 và 18. Tính các góc và đường cao của tam giác ABC.
Cho tam giác ABC cân tại A có AB = AC = 10 cm;BC = 12 cm.Kẻ AH vuông góc với BC. a) Chứng minh HB = HC;tính AH. b) kẻ Bx vuông góc với AB tại B; Cy vuông góc với AC tại C; Bx và Cy cắt nhau tại M. chứng minh AM là tia phân giác của góc BAC và suy ra A,H,M thẳng hàng. c)kẻ HK song song với MB(K thuộc MC) Trên tia HM lấy điểm O sao cho OM = 2OH. Chứng minh ba điểm B,O,K thẳng hàng
Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.
Cho tam giác ABC có AB = 5cm , AC = 5cm , BC = 5 căn bậc 2 cm
a) Và từ tam giác trên chứng minh tam giác ABC vuông tại A
b) trên nửa mặt phẳng bờ BC không chứa A dựng D sao cho CD vuông góc với BC , CD = 5 căn bậc 2 cm tính độ dài BD
a) Ta có: \(BC^2=\left(5\sqrt{2}\right)^2=50\)
\(AB^2+AC^2=5^2+5^2=50\)
Do đó: \(BC^2=AB^2+AC^2\)(=50)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
cho tam giác abc vuông tại a ab=9 ,ac=12 a) tính góc b , góc c
b) phân giác góc a cắt bc tại d tính bd , cd
c) de vuông góc ab , df vuông góc ac . aedf là hình gì tính chu vi và diện tích
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)
hay \(\widehat{C}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{15}{21}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}BD=\dfrac{45}{7}\left(cm\right)\\CD=\dfrac{60}{7}\left(cm\right)\end{matrix}\right.\)
c) Xét tứ giác AFDE có
\(\widehat{AFD}=90^0\)
\(\widehat{AED}=90^0\)
\(\widehat{FAE}=90^0\)
Do đó: AFDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật AFDE có AD là tia phân giác của \(\widehat{FAE}\)(gt)
nên AFDE là hình vuông(Dấu hiệu nhận biết hình vuông)
cho tam giác ABC cân tại B, có góc B = 400 ,BA = 3 cm.hãy nêu cách vẽ tam giác cân ABC và tính hai cạnh BC và cạnh AC?
2) Cho tam giác ABC cân tại C .CA = CB = 10 cm. AB = 12 cm.kẻ CI vuông góc với AB
a) chững minh IA = IB
b) Tính IC
Cho tam giác ABC vuông tại A có AB=12, AC=16. Kẻ đường thẳng vuông góc BC tại B và cắt AC kéo dài tại E.
A, Tính AE, ^C
B, AM vuông góc BC tại M. c/m tam giác MAB đồng dạng ABE
C, gọi CF là phân giác ^BCE. Kẻ BH vuông góc CF tại H, c/m ^CEF=^CHA
D, tính SEFMC
(góc làm tròn đến phút, cạnh làm tròn đến chữ số thập phân thứ nhất)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:
\(BA^2=AE\cdot AC\)
\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)
nên \(\widehat{C}\simeq36^052'\)
b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có
\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)
Do đó: ΔMAB\(\sim\)ΔABE(g-g)
Cho tam giác ABC vuông tại A có AB = 9 cm , AC = 12 cm
a. Tính góc B, C , đường BC và đường cao AH
b. Đường phân giác của góc A cắt BC tại D . Tính BD, CD
a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)
\(C=90^0-B\approx37^0\)
Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)
Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)
b) Vì AD là phân giác tại A của tam giác ABC nên:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà \(BD+CD=BC=15\)
\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)