a) Ta có: \(BC^2=\left(5\sqrt{2}\right)^2=50\)
\(AB^2+AC^2=5^2+5^2=50\)
Do đó: \(BC^2=AB^2+AC^2\)(=50)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a) Ta có: \(BC^2=\left(5\sqrt{2}\right)^2=50\)
\(AB^2+AC^2=5^2+5^2=50\)
Do đó: \(BC^2=AB^2+AC^2\)(=50)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
cho tam giác ABC có AB = AC. Kẻ tia phân giác AM của góc BAC ( M thuộc BC )a. Chứng minh : Tam giác BAM = tam giác CAM
b. Chứng minh : AM vuông góc BC
c. Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm D sao cho DB = DC. Chứng minh rằng : AD là trung trực BC
Cho tam giác ABC, trên nửa mặt phảng bờ AC không chứa B, vẽ AE vuông góc AC và AE=AB. Trên nửa mặt phẳng bờ AB không chứa C, vẽ AD vuông AB và AD=AB. Vẽ AH vuông BC. Qua D kẻ di vuông AH, qua e kẻ đường thẳng // DI cắt AH tại K
a) Chứng minh DI=AH
b) Chứng minh EK vuông AH và EK=DI
c) Cho DE và IK cắt nhau tại O. Chứng minh O là trung điểm IK và DE
d) Chứng minh BE vuông CD và BE=CD
Bài 10. Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: ABD = EBD.
b) Chứng minh: ABE là tam giác đều.
c) Tính độ dài cạnh BC.
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm . Kẻ AH vuông góc với BC tại H.
a) chứng minh: AH là tia phân giác của A.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB ( D thuộc AB), Kẻ HE vuông góc với AC ( E thuộc AC) chứng minh tam giác HDE là tam giác cân.
có vẽ hình ạ
cho tam giác ABC vuông tại A có AB=5cm, BC=10cm
a, Tính dộ dài AC
b, Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. CM tam giác ABD = tam giác EBD và AE vuông góc BD
c, Gọi giao điểm của hai đường thẳng ED và BA là F. CM tam giác ABC = tam giác AFC
d, Qua A vẽ dường thẳng song song với BC cắt CF tại G. CM ba điểm B,D,G thảng hàng
CHO TAM GIÁC ABC VUÔNG TẠI A CÓ GÓC C=30 . KẺ AH VUÔNG GÓC BC. TRÊN ĐOẠN THẲNG HC LẤY D SAO CHO HD=HB. E LÀ CHÂN ĐƯỜNG VUÔNG GÓC KẺ TỪ C ĐẾN AD
. CHỨNG MINH
A, , AB=AD
B, TAM GIÁC ABD ĐỀU
C, SO SÁNH AH VÀ CE
D, BIẾT AB=5CM. TÍNH ĐỘ DÀI AH VÀ BC
Bài:_ Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB (E thuộc AB). BD và CE cắt nhau tại I. Là Là a) Cho BC = 5cm, DC = 3cm. Tính độ dài BD. b) Chứng minh rằng BD =CE. c) thẳng AI cắt BC tại H. Chứng minh rằng AI vuông góc với BC tại H.
Cho tam giác ABC vuông tại A có AB=5cm, AC=12cm
a) Tính BC.
b) Kéo dài AB lấy D sao cho B là trung điểm của AD. Nối CD, qua B vẽ đường thẳng vuông góc với AD cắt CD tại E. Chứng minh tam giác ABE=tam giác DBE và suy ra tam giác AED cân.
c) Kẻ AK vuông góc với BC tại K. Qua D kẻ đường thẳng vuông góc với đường thẳng BC tại F. Chứng minh B là trung điểm của KF.
d) Chứng minh tam giác AEC cân và suy ra E là trung điểm của DC.
mọi người giúp mình với ạ tối nay e nộp roàiiiiiiii
e cảm ơn ạ =(((