Tính:
F=x^2006-8x^2005+8x^2004-...+8x^2-8x-5, tại x=7
giúp mk vs!
Tính giá trị biểu thức;
A= x^5 - 5x^4 + 5x^3 - 5x^2 + 5x - 6 tại x=4
B= x^2006 - 8x^2005 + 8x^2004 -...+8x^2 - 8x - 5 tại x=7
\(A=x^5-5x^4+5x^3-5x^2+5x-6\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)
\(=-2\)
Tính giá trị biểu thức sau
a) A = x5 - 5x4 + 5x3 - 5x2 + 5x -1 tại x = 4
b) B = x2006 - 8x2005 + 8x2004 - .... + 8x2 - 8x -5 tại x = 7
MK ĐANG CẦN GẤP GIÚP MK NHA MAI MK NỘP BÀI RỒI Ạ !!!
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
Ta có :
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)
\(A=3\)
P/s tham khảo nha
hok tốt
Tính giá trị của biểu thức:
\(B=x^{2006}-8x^{2005}+8x^{2004}-...+8x^2-8x-5\)tại \(x=7\)
Giúp mình với !!!!!!
Ta có
8-1=x
Thay vào B
=>\(B=x^{2006}+\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-.......+\left(x+1\right)x^2-\left(x+1\right)x-5\)
=>tự giải típ
Tính giá trị biểu thức sau
a) A = x5 - 5x4 + 5x3 - 5x2 + 5x -1 tại x = 4
b) B = x2006 - 8x2005 + 8x2004 - .... + 8x2 - 8x -5 tại x = 7
A = x5 - 5x4 + 5x3 - 5x2 + 5x -1
A = x5 - ( 4 + 1 ) x4 + ( 4 + 1 ) x3 - ( 4 + 1 ) x2 + ( 4 + 1 )x - 1
Thay 4= x vào biểu thức A , ta đc :
A= x5 - ( x + 1 ) x4 + ( x + 1 ) x3 - ( x + 1 ) x2 + ( x + 1 )x - 1
A= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1
A= x - 1
Thay x = 4 vào biểu thức A, ta đc
A= 4 - 1
A= 4
b, B= x2006 - 8x2005 + 8x2004 - .... + 8x2 - 8x -5
B= x2006 - ( 7 + 1 ) x2005 + ( 7 + 1 ) x2004 - .......+ ( 7 + 1 ) x2 - ( 7 + 1 ) x - 5
Thay 7 = x vào biểu thức B ta đc
B= x2006 - ( x + 1 ) x2005 + ( x + 1 )x2004 - ......+ ( x + 1 ) x2 + ( x + 1 )x - 5
B = x2006 - x2006 - x2005 + x2005 + x2004 - .....+ x3 - x2 + x2 + x - 5
B= x - 5
Thay x = 7 vào biểu thức B, ta đc:
B = 7 - 5
B = 2
( PCY ❤ )
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
Ta có :
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)
\(A=3\)
P/s tham khảo nha
hok tốt
Tính GTBT
x^2006-8.x^2005+8.x^2004-...+8.x^2-8x-5 tại x=7
x=7 => x+1=8
\(x^{2006}-8x^{2005}+8x^{2004}-...+8x^2-8x-5\)
\(=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+\right)x^2-\left(x+1\right)x-5\)
\(=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\)
\(=-x-5=-7-5=-12\)
Vậy...
bài 1 Tính giá trị biểu thúc :
a) A =x5 -5x4 +5x3-5x2+ 5x-1 tại x=4
b) B= x2006 -8.x2005+8.x2004-...+8x2-8x-5 tại x=7
****gấp gấp gấp
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x – 5 với x = 7
giup vs mn
Ta có: \(x=7\Rightarrow8=x+1\)Thay 8=x+1 vào B ta được:
\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(=x-5\)Thay x=7 ta được:
\(B=7-5=2\)
Vậy \(B=2\)với x=7
Bài 1: Tính f(7) biết: f(x)= \(-x^{15}+8x^{14}-8x^{13}+8x^{12}-8x^{11}+....+8x^2-8x-5\)
GIÚP MIK VS!!! MIK ĐAG CẦN RẤT GẤP
Bài 1:
\(f\left(x\right)=-x^{15}+8x^{14}-8x^{13}+...-8x-5\)
Ta xét \(x=7\Leftrightarrow x+1=8\)
Khi đó :
\(f\left(7\right)=-x^{15}+x^{14}\left(x+1\right)-x^{13}\left(x+1\right)+...-x\left(x+1\right)-5\)
\(f\left(7\right)=-x^{15}+x^{15}+x^{14}-x^{14}-x^{13}+...-x^2-x-5\)
\(f\left(7\right)=-x-5\)
\(f\left(7\right)=-7-5\)
\(f\left(7\right)=-12\)
Vậy...
giải phương trình (8x+5) x (8x+7) x (8x+6)^2=72
Giúp mk nha mn!
\(\left(8x+5\right)\left(8x+7\right)\left(8x+6\right)^2=72\)
Đặt \(8x+5=t\left(t\ge0\right)\)
\(t\left(t+2\right)\left(t+1\right)^2-72=0\)
\(\Leftrightarrow t\left(t+1\right)\left(t+2\right)\left(t+1\right)-72=0\)
\(\Leftrightarrow\left(t^2+t\right)\left(t^2+3t+2\right)-72=0\)
\(\Leftrightarrow t^4+3t^3+2t^2+t^3+3t^2+2t-72=0\)
\(\Leftrightarrow t^4+4t^3+5t^2+2t-72=0\)
\(\Leftrightarrow\left(t^2+2t+9\ne0\right)\left(t+4\right)\left(t-2\right)=0\Leftrightarrow t=-4;2\)
hay \(8x+5=-4\Leftrightarrow x=-\frac{9}{8}\)( trường hợp 1 )
\(8x+5=2\Leftrightarrow x=-\frac{3}{8}\)( trưởng hợp 2 )
Vậy tập nghiệm của phương trình là S = { -9/8 ; -3/8 }
\(\left(8x+5\right)\cdot\left(8x+7\right)\cdot\left(8x+6\right)^2=72\)
Đặt \(t=8x+6\)
\(Pt\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2-72=0\)
\(\Leftrightarrow\left(t^2-1\right)t^2-72=0\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\Leftrightarrow\orbr{\begin{cases}t^2=9\\t^2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}8x+6=3\\8x+6=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{8}\\x=-\frac{9}{8}\end{cases}}}\)
Vậy....
( 8x + 5 )( 8x + 7 )( 8x + 6 )2 = 72
<=> ( 64x2 + 96x + 35 )( 64x2 + 96x + 36 ) - 72 = 0
Đặt t = 64x2 + 96x + 35
pt <=> t( t + 1 ) - 72 = 0
<=> t2 + t - 72 = 0
<=> t2 - 8t + 9t - 72 = 0
<=> t( t - 8 ) + 9( t - 8 ) = 0
<=> ( t - 8 )( t + 9 ) = 0
<=> ( 64x2 + 96x + 35 - 8 )( 64x2 + 96x + 35 + 9 ) = 0
<=> ( 64x2 + 96x + 27 )( 64x2 + 96x + 44 ) = 0
<=> 4( 64x2 + 24x + 72x + 27 )( 16x2 + 24x + 11 ) = 0
<=> 4[ 8x( 8x + 3 ) + 9( 8x + 3 ) ]( 16x2 + 24x + 11 ) = 0
<=> 4( 8x + 3 )( 8x + 9 )( 16x2 + 24x + 11 ) = 0
<=> 8x + 3 = 0 hoặc 8x + 9 = 0
[ do 16x2 + 24x + 11 = ( 16x2 + 24x + 9 ) + 2 = ( 4x + 3 )2 + 2 ≥ 2 ∀ x ]
<=> x = -3/8 hoặc x = -9/8
Vậy phương trình có tập nghiệm S = { -3/8 ; -9/8 }