biết a,b là các số thảo mãn a>b>0 và a.b=1
cm : \(\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
biết a, b là các số thỏa mãn a> b> 0 và a.b =1
Chứng minh \(\frac{a^2+b^2}{a-b}>=2\sqrt{2}\)
\(\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2}{a^2+b^2-2ab}=\frac{x^2}{x-2}\) với \(x=a^2+b^2\)
Xét \(x^2-8\left(x-2\right)=x^2-8x+16=\left(x-4\right)^2\ge0\)
\(\Rightarrow x^2\ge8\left(x-2\right)\Leftrightarrow\frac{x^2}{x-2}\ge8\)hay \(\frac{\left(a^2+b^2\right)^2}{\left(a^2+b^2-2ab\right)}\ge8\Leftrightarrow\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}\ge8\Rightarrow\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Biết a,b là 2 số thực dương thỏa mãn a2+b2=1.Chứng minh
\(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)
Đặt \(a=\frac{x^2}{z},\text{ }b=\frac{y^2}{z}\) thì \(z=\sqrt{x^4+y^4}\) và x, y, z > 0
Ta cần chứng minh: \(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)
Tương đương: \(\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge\left(\frac{x}{y}-\frac{y}{x}\right)^2+2\sqrt{2}\)
Sau cùng ta cần chứng minh: \(\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\)
Xong.
Nhân tiện, với cùng điều kiện như trên thì bất đẳng thức sau đây đúng với mọi \(k\le1\):
\(\frac{1}{a}+\frac{1}{b}\ge k\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+2\sqrt{2}\)
+) k = 1 đã được chứng minh.
+) k = 0 quá quen thuộc.
+) k < 0 thì yếu hơn k = 0.
Cho a,b là các số thực dương thỏa mãn :
C/m: \(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)
Cho a,b là các số thực dương thỏa mãn :
C/m: \(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)
Biết a,b là hai số thực dương thỏa mãn \(a^2+b^2=1\) .Chứng minh rằng
\(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)
\(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2=\frac{1}{a}+\frac{1}{b}-\frac{a}{b}-\frac{b}{a}+2=\frac{a+b-1}{ab}+2\)
\(\frac{2\left(a+b-1\right)}{\left(a+b\right)^2-1}+2=\frac{2}{a+b+1}+2\ge\frac{2}{\sqrt{2\left(a^2+b^2\right)}+1}+2=\frac{2}{\sqrt{2}+1}+2=2\sqrt{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Đặt \(a=\frac{x^2}{z},b=\frac{y^2}{z}\rightarrow x^4+y^4=z^2\) where x, y, z> 0
\(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2\sqrt{2}+\left(\frac{x}{y}-\frac{y}{x}\right)^2\)
\(\Leftrightarrow\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\) *Đúng*
ta chứng minh \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{2}+\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
ta thực hiện các phép biển đổi tương đương
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{2}+\frac{a}{b}+\frac{b}{a}-2\)
\(\Leftrightarrow a+b+2ab\ge2\sqrt{2}ab+1\)
\(\Leftrightarrow a+b+\left(a+b\right)^2-1\ge2\sqrt{2}\left(a+b\right)^2+1-\sqrt{2}\)
\(\Leftrightarrow\left(1-\sqrt{2}\right)t^2+t+\sqrt{2}-2\ge0,t=a+b\)
\(\Leftrightarrow\left(1-\sqrt{2}\right)\left(t-\sqrt{2}\right)\left(t-1\right)\ge0\)
từ điều kiện đề bài ta dễ dàng suy ra được 1<t\(\le\sqrt{2}\)nên bắt đẳng thức cuối cùng đúng
dấu "=" xảy ra khi và chỉ khi a=b
Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sqrt{\dfrac{ab+2c^2}{a^2+b^2+ab}}\)\(=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+c^2+c^2\right)}}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}\)\(=\dfrac{ab+2c^2}{a^2+b^2+c^2}\)
\(\Rightarrow\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}\ge ab+2c^2\)
Tương tự: \(\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\); \(\sqrt{\dfrac{ac+2b^2}{1+ac-b^2}}\ge ac+2b^2\)
Cộng vế với vế \(\Rightarrow VT\ge2a^2+2b^2+2c^2+ab+bc+ac=2+ab+bc+ac\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Cho a > b > 0 và a.b = 1.
Chứng minh: \(\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Giúp mình với ạ!
Tìm các số a, b,c biết a, b, c là các số khác 0 thoả mãn :
\(\frac{a.b+a.c}{2}=\frac{b.c+b.a}{3}=\frac{c.a+c.b}{4}\) và a + b + c = 69
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)
( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)
\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)
Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)
\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)
Thế vào: a + b + c = 69
\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)
\(\Rightarrow c=45\)
\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)
Biết là dùng dãy tỷ số rồi
Không đơn giản nhìn ra được cách xắp xép (+) (-) như @ ALI đâu. Hay!
Còn cách ghép nào hay hơn nữa không nhỉ%
cho a.b là các số hữu tỉ thỏa mãn:\(^{^{a^2}+b^2+\left(\frac{a\cdot b+1}{a+b^2}\right)^2=2.}cmr:\sqrt{a\cdot b+1}\)cũng là số hữu tỉ
\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)