Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Minh Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 21:58

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 9:56

Đáp án là C

thuy
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 22:39

BFEC; AEDB; DCAF

Được Cũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2023 lúc 18:13

loading...  

Nguyễn Demon
Xem chi tiết
Hân
Xem chi tiết
Minh Thông Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 11:39

1: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{EAB}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

Xuân Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 22:46

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK

Huong Nguyen
Xem chi tiết
Buddy
3 tháng 3 2021 lúc 20:02

h vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp