Cho ΔABC vuông ở A , AB = 12 cm , BC=20 cm
a) tính AC
b)Vẽ đường cao AI . Tính IB , IC
Cho ΔABC vuông ở A , AB = 12 cm , BC=20 cm
a) tính AC
b)Vẽ đường cao AI . Tính IB , IC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BI\cdot BC\\AC^2=CI\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=\dfrac{144}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\end{matrix}\right.\)
Cho ΔABC vuông ở A , AB=12cm , BC =20 cm
a) Tính AC
b) Vẽ đường cao AI . Tính IB và IC
Áp dụng Pitago:
\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
Áp dụng hệ thức lượng:
\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)
\(IC=BC-IB=12,8\left(cm\right)\)
ΔABC vuông tại A (AB<AC) đường cao AH. Vẽ HM⊥AC tại M.
a) CM: AH2=AM.AC
b) CM: AM.AC=HB.HC
c) Qua A vẽ đường thẳng song song BC cắt HM tại I, IN⊥BC tại N. Chứng minh ΔHMN đồng dạng ΔHCI
d) Gọi E là giao điểm của IN với AC, HE cắt IC ở F, AB=12, BC=20. Tính SAMF=?
Giúp mik câu d ik. Cảm ơn nhak
a) Xét \(\Delta HAC\)và \(\Delta MAH\) có:
\(\widehat{AHC}=\widehat{AMH}=90^0\)
\(\widehat{HAC}\) CHUNG
suy ra: \(\Delta HAC~\Delta MAH\)
\(\Rightarrow\)\(\frac{AH}{AM}=\frac{AC}{AH}\)
\(\Rightarrow\)\(AH^2=AM.AC\)
b) \(\Delta AHB~\Delta CHA\)(bn đọc tự chứng minh)
\(\Rightarrow\)\(\frac{AH}{CH}=\frac{HB}{HA}\)
\(\Rightarrow\)\(AH^2=HB.CH\)
mà \(AH^2=AM.AC\)
\(\Rightarrow\)\(AM.AC=HB.CH\)
Cho tam giác ABC vuông tại A , đường cao AH
a) Chứng minh ΔABC ∼ ΔABH
b)Vẽ tia phân giác AI . Tính IB và IC biết BC =10cm và AB\AC=2\3
Cho tam giác ABC vuông tại A , AB = 15 cm ,AC = 20 cm . Kẻ đường cao AH ( H ϵ BC )
a) C/m ΔABC đồng dạng ΔHBA
b) Tính độ dài BC , AH ,BH ,CH
c) Vẽ đường phân giác AD của góc BAC . Tính BD , DC
a)
Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{B}:chung\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\) \(\left(ĐPCM\right)\)
b)
Áp dụng định lý Py-ta-go cho tam giác vuông ABC. Ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow15^2+20^2=BC^2\)
\(\Leftrightarrow BC=25\)
Ta có: \(\text{ΔABC ∼ ΔHBA }\) (cm câu a)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}=\dfrac{AB}{BH}\)
⇔ \(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇔ \(\dfrac{AH}{20}=\dfrac{15}{25}=\dfrac{BH}{15}\)
\(\Rightarrow\left\{{}\begin{matrix}AH=12\\BH=9\end{matrix}\right.\)
⇒ \(CH=BC-BH=25-9=16\)
Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại A cắt BC ở I.
a, Chứng minh IB/IC = AB^2/AC^2
b, Tính IA, IC biết rằng AB = 20 cm, AC = 28 cm, BC = 24 cm
GIÚP MÌNH NHANH NHANH VỚI !!!
bn tự kẻ hình nhé:
a) Xét tgiac IAB và tgiac ICA có:
góc I: chung
góc IAB = góc ICA (chắn cung AB)
suy ra: tgiac IAB = tgiac ICA (g.g)
=> IA/IC = IB/IA = AB/AC
=> IA/IC . IB/IA = AB/AC . AB/AC
=> IB/IC = AB^2/AC^2 (đpcm)
b) Theo câu a) ta có:
IA/IC = IB/IA = AB/AC = 5/7
Đặt: IA = 5k thì: IC = 7k; IB = 25/7 k
Ta có: IC - IB = BC
=> \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\)
=> \(24=\frac{24}{7}k\)
=> \(k=7\)
Vậy IA = 5.7 = 35
IC = 7.7 = 49
Hoàng gia bảo ko bt bằng mấy à
cho tam giác ABC vuông ở A;AB=15cm; CA=20 cm,đường cao AH
a) CM: ΔHBA∼ ΔABC,ΔHBA∼ΔHAC
B) TÍNH ĐỘ DÀI BC,AH,HB,HC
C) VẼ ĐƯỜNG PHÂN GIÁC AD CỦA ΔABC,TÍNH ĐỘ DÀI DB,DC
D) TÍNH DIỆN TÍCH ΔAHB
GIÚP MÌNH VỚI MAI THI R
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
c:AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=25/7
=>DB=75/7cm; DC=100/7cm
* Cho ΔABC vuông tại A có B= \(30^0\), AB=6cm
a. Giải ΔABC
b. Vẽ đường cao AH và trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có AB=3 cm, BC=5cm, đường cao AH
a. Tính số đo góc B, C
b. Gọi AE là phân giác của góc A (E ∈ BC). Tính AE
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, AC = 12 cm.
a) Tính BC, AH
b) Vẽ đường tròn tâm A bán kính AH. Từ C vẽ tiếp tuyến CD với đường tròn tâm A (D là tiếp điểm). Đường thẳng DH cắt AC tại I. Chứng minh \(IA\cdot IC=\dfrac{DH^2}{4}\)
c) Đường thẳng DA cắt đường tròn tâm A tại điểm thứ hai là E. Chứng minh BE là tiếp tuyến đường tròn tâm A.
\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)
\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)
Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\) \(\Rightarrow\Delta AHB=\Delta AEB\)
\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến