b) x^2 + 2xy + y^2 - x - y - 12
Cho 2 số x, y dương thõa x+y=12, bất đẳng thức nào sau đây sai:
A. \(2xy>=x+y=12\)
B. \(xy< =\left(\dfrac{x+y}{2}\right)^2=36\)
C. \(2\sqrt{xy}< =x+y=12\)
D. \(2xy< =x^2+y^2\)
A.sai (x tiến đến 0 => xy --> 0)
B. đúng
C .đúng
D. đúng
b1 Cho x+y=-1 và xy=-12 tính gt của B:
a,A=x^2+2xy+y^2
b,B=x^2+y^2
c,C=x^3+3x^2y+3xy^2+y^3
d,D=x^3+y^3
b2 cho x-y=-3 và xy=10 tínhN
M=x^2-2xy+y^2
N=x^2+y^2
P=x^3-3x^2y+3xy^2-y^3
Q=x^3-y^3
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
a) x^2+x-y^2+y
b) 3x^2+3y^2-6xy-12
c) 3x+3y-x^2-2xy-y^2
d) x^3-x+3x^2+3xy^2-y+y^3
a) Nhóm x^2 và y^2 ; x và y
b) Nhóm 3 hạng tử đầu lại vs nhau . Sau cùng xuất hiện nhân tử chung là 3
c) Nhóm 2 hạng tử đầu với nhau. ba hạng tử còn lại với nhau .
d) .....
D,ghép đầu với cuối là hằng dẳng thức 2 cái giữa với nhau là nhân tử chung là 3x
phân tích đâ thưcs ra nhân tử
a x^3-x^2-x+2
b x^2+2xy+y^2-x-y-12
c . ( x^2+x+1).x(x^2+x+1)-12
Kết quả của phép nhân \((x + y - 1)(x + y + 1)\) là:
A. \({x^2} - 2xy + {y^2} + 1\)
B. \({x^2} + 2xy + {y^2} - 1\)
C. \({x^2} - 2xy + {y^2} - 1\)
D. \({x^2} + 2xy + {y^2} + 1\)
\(\left(x+y-1\right)\left(x+y+1\right)=x^2+xy-x+xy+y^2-y+x+y-1\\ =x^2+\left(xy+xy\right)+\left(-x+x\right)+y^2+\left(-y+y\right)-1\\ =x^2+2xy+y^2-1\\ =>B\)
GPTNN:
a) \(x^2+y^2+5x^2y^2+60=37xy\)
b) \(x\left(x^2-6x+12\right)=y^2+27\)
c) \(x^2+2y^2-2xy+2x-6y+1=0\)
Trắc nghiệm chọn đáp án đúng
1) điều kiệm để biểu thức 2 phần x-1 là một phân thức
A)x#1 ;b) x=1; c) x#0 ; d) x=0
2) phân thức bằng với phân thức 1-x phần y-x là:
A) x-1 phần y-x ; b) 1-x phần x-y ; c) x-1 phần x-y ; d) y-x phần 1-x
3) kết quả rút gọn của phân thức 2xy(x-y)^2 phần x-y bằng:
a) 2xy^2 ;b) 2xy(x-y) ; c) 2(x-y)^2; d) (2xy)^2
4) hai phân thức 1 phần 4x^2 y và 5 phần 6xy^3 z có mẫu thức chung đơn giản nhất là:
a) 8x^2 y^3 z ; b) 12 x^3 y^3 z ; c) 24 x^2 y^3 z ; d) 12 x^2 y^3 z
5) phân thức đối của phân thức 3x phần x+y là:
A) 3x phần x-y ;b) x+y phần 3x ;c) -3x phần x+y ;d) -3x phần x-y
6) phân thức nghịch đảo của phân thức -3y^2 phần 2x là:
A) 3y^2 phần 2x ; b) -2x^2 phần 3y ; c) -2x phần 3y^2 ; d) 2x phần 3y^2
Thực hiện phép tính:
a/(x^2+y^2-2xy)+(x^2+y^2 +2xy)
b/(x^2+y^2-2xy) - (x^2+y^2+2xy)
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6