Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Trâm
Xem chi tiết
Trên con đường thành côn...
2 tháng 8 2021 lúc 21:52

undefined

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 21:57

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

Vien Nu Binh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 23:42

M=x^2*(-1)-y^2(x-y)+x^2-y^2+100

=-x^2+y^2+x^2-y^2+100

=100

Anh Tuấn Phạm
Xem chi tiết
Kiều Vũ Linh
24 tháng 3 2022 lúc 14:49

\(M=x^2\left(x-y\right)-y^2\left(x-y\right)+x^2-y^2+100\)

\(=\left(x-y\right)\left(x^2-y^2\right)+x^2-y^2+100\)

\(=\left(x^2-y^2\right)\left(x-y+1\right)+100\)

\(=\left(x^2-y^2\right).0+100\)

\(=100\)

Vậy \(M=100\)

Lê Thanh Hải
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 4 2017 lúc 5:18

a) Kết quả M = 0. Chú ý: nhân tử chung là 2f - 5 = 0.

b) Kết quả N = 300000.

c) Kết quả p = 0. Chú ý: nhân tử  x 2  + y -1 = 0.

d) Kết quả Q = 280. Chú ý: Q = (x - y)[ ( x   -   y ) 2  - xy].

Alicia
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 21:16

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)

HÀ GIA BẢO
Xem chi tiết
phạm trọng đạt
6 tháng 12 2021 lúc 22:12

dễ mà cháu

Khách vãng lai đã xóa
Nguyễn Bá Hào
Xem chi tiết
Trí Tiên亗
6 tháng 3 2020 lúc 21:23

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

Khách vãng lai đã xóa
Nguyễn Bá Hào
7 tháng 3 2020 lúc 9:42

thanks bạn mình hiểu sương sương rồi:))

Khách vãng lai đã xóa
Lê Dũng
Xem chi tiết
Lê Thị Như Quỳnh
Xem chi tiết