Cho x, y là các số thực dương thỏa mãn điều kiện Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
A. 12
B. 8
C. 0
D. 4
Đáp án C
Phương pháp:
Rút y theo x từ phương trình (1), thế vào phương trình (2) để tìm khoảng giá trị của x.
Đưa biểu thức P về 1 ẩn x và tìm GTLN, GTNN của biểu thức P.
Cách giải:
Ta nhận thấy x = 0 không thỏa mãn phương trình (1), do đó thế vào (2):
Sử dụng MTCT ta tính được
Cho x, y, z thỏa mãn điều kiện x + y + z + xy + yz + xz = 6 .Vậy giá trị nhỏ nhất của P= x2 + y2 + z2 là P=.........
Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có:
+) x² + y² ≥ 2xy
x² + 1 ≥ 2x
+) y² + z² ≥ 2yz
y² + 1 ≥ 2y
+) z² + x² ≥ 2xz
z² + 1 ≥ 2z
=> 2 ( x2 + y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1
Cho x,y là số thực thỏa mãn điều kiện x+y=1.Tìm giá trị nhỏ nhất của A= x^3+y^3
x + y = 1 => y = 1 - x
A = x3 + y3 = (x + y)(x2 - xy + y2)
= x2 - x(1 - x) + (1 - x)2
= x2 - x + x2 + x2 - 2x + 1
= 3x2 - 3x + 1
= 3(x2 - x + \(\dfrac{1}{3}\))
= 3(x2 - 2x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}+\dfrac{1}{12}\))
= 3(x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}\) ≥ \(\dfrac{1}{4}\) ∀x
Dấu "=" xảy ra ⇔ x - \(\dfrac{1}{2}\) = 0 ⇔ x = \(\dfrac{1}{2}\)
Vậy minA = \(\dfrac{1}{4}\) ⇔ x = \(\dfrac{1}{2}\)
Cho a, b > 0 thỏa mãn điều kiện a + b + ab = 1, giá trị nhỏ nhất của P = a 4 + b 4 l à x ( x - y ) 4 ( x , y ∈ N ) . Giá trị của x + y là
A. 3
B. 5
C. 7
D. 9
Cho số phức z thỏa mãn điều kiện z - 1 - 2 i = 4 Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z + 2 + i Tính giá trị của tổng S=M2+ m2
A. S = 82
B. . S = 34
C. S = 68
D. S = 36.
Cho số phức z thỏa mãn điều kiện z + 1 1 - z ¯ là số thực. Khi đó môđun của z có giá trị nhỏ nhất bằng
A. 1 2
B. 1
C. 1 4
D. 1 2
Cho số phức z thỏa mãn điều kiện z + 1 i - z ¯ là số thực. Khi đó môđun của z có giá trị nhỏ nhất bằng
Cho số phức z thỏa mãn điều kiện z + 1 i - z ¯ là số thực. Khi đó môđun của z có giá trị nhỏ nhất bằng
Đáp án A
Gọi z = x + i y , x , y ∈ ℝ
z - 1 - i = 1 ⇔ x + i y - 1 - i = 1
⇔ x - 1 2 + y - 1 2 = 1 2 C
Gọi I là tâm của đường tròn (C).
Với mọi điểm P bất kì chạy trên S,
ta có O P ≤ O M + M P
do đó số phức tương ứng với P có môđun lớn nhất
khi và chỉ khi OP lớn nhất
OP = OM + MP
Tương đương 3 điểm O, M, P thẳng hàng
và M nằm giữa O và P
⇔ P ≡ P ' x P > 1
Phương trình đường thẳng OI: y = x
Tọa độ P’ là nghiệm của hệ phương trình :
Cho số phức z thỏa mãn điều kiện z + 1 i − z ¯ là số thực. Khi đó môđun của z có giá trị nhỏ nhất bằng
A. 1 4
B. 1 2
C. 1 2
D. 1
Cho số phức z thỏa mãn điều kiện |z -2 + 2i | + | z + 1 -3i | = 34 . Hãy tìm giá trị lớn nhất, giá trị nhỏ nhất của |z + 1 + i|.
A. 6 34 v à 8
B. 6 34 17 v à 4
C. 34 v à 8
D. Đáp án khác.
Chọn B.
Gọi M (x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Gọi điểm A(2; -2) ; B(-1; 3) và C(-1; -1)
Phương trình đường thẳng AB: 5x + 3y - 4 = 0.
Khi đó theo đề bài
Ta có . Do đó quỹ tích M là đoạn thẳng AB.
Tính CB = 4 và .
Hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Vậy