Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho số phức z thỏa mãn điều kiện z   + 1 i - z ¯  là số thực. Khi đó môđun của z có giá trị nhỏ nhất bằng

Cao Minh Tâm
7 tháng 12 2019 lúc 5:58

Đáp án A

Gọi  z = x + i y ,   x , y   ∈ ℝ  

z - 1 - i = 1   ⇔ x + i y - 1 - i = 1

⇔ x - 1 2   + y - 1 2 =   1 2   C

Gọi I là tâm của đường tròn (C).

Với mọi điểm P bất kì chạy trên S,

ta có  O P   ≤   O M   +   M P

do đó số phức tương ứng với P có môđun lớn nhất

khi và chỉ khi OP lớn nhất

OP = OM + MP

Tương đương 3 điểm O, M, P thẳng hàng

và M nằm giữa O và P 

⇔ P   ≡ P '   x P   > 1

Phương trình đường thẳng OI:  y = x

 

Tọa độ P’ là nghiệm của hệ phương trình :


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết