\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
Rút gọn rồi tính: \(B=\frac{\left(x+5y\right)\left(x-5y\right)}{x^2+y^2}\left(\frac{5x-y}{x^2+5xy}+\frac{5x+y}{x^2-5xy}\right)\)
A=\(\frac{x^2-25y^2}{x^2+y^2}\cdot\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right)\)
a, Tìm đkxđ của x để giá trị của biểu thức A được xác định
b,rút gọn biểu thức A
c,tính gt của A với x=-2,y=2010
d, tìm các gt của biến để A có gt bằng -2
bai 1 thuc hien phep tinh a)\(\dfrac{\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{x^2-4x+4}\right)}{\left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)}\)
b)\(\left(\dfrac{5x+y}{x^2-5xy}+\dfrac{5x-y}{x^2+5xy}\right)\cdot\dfrac{x^2-25y^2}{x^2+y^2}\)
\(a,=\dfrac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\dfrac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{-8x}{\left(x-2\right)^2\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{2x}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
\(b,=\dfrac{5x^2+26xy+5y^2+5x^2-26xy+5y^2}{x\left(x-5y\right)\left(x+5y\right)}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\\ =\dfrac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{10}{x}\)
(5x + y/x^2 + 5x-y/x^- 5xy). x^2 - 25y^2/x^2 + y^2
ai nhanh mình tick
\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right).\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\left[\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\right)\left(x+5y\right)}\right].\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{5x^2+25xy+xy+5y^2+5x^2-25xy-xy+5y^2}{x\left(x^2+y^2\right)}\)
\(=\frac{10x^2+10y^2}{x\left(x^2+y^2\right)}\)
\(=\frac{10}{x}\)
a) (5x + y/x^2 + 5xy). x^2 - 25y^2/x^2 + y^2
đề bài thực hiện phép tính ( / ) là phân số ai nhanh mình k cố lên nhé
\(a,\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}:\frac{10x-10y}{x^3+y^3}\)
\(b,(\frac{x+2}{x+1}-\frac{2x}{x-1}).\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
\(c,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)-\frac{x^2-y^2}{\left(x-y\right)^2}\)
\(d,\frac{\frac{x-y}{x+y}-\frac{x+y}{x-y}}{1-\frac{x^2}{x^2+y^2}}\)
\(e,\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}+\frac{2x-2}{x^2+2x}\)
a) \(\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}:\frac{10x-10y}{x^3+y^3}\)
\(=\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}.\frac{x^3+y^3}{10x-10y}\)
\(=\frac{3\left(x^2-2xy+y^2\right)}{5\left(x^2-xy+y^2\right)}.\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{10\left(x-y\right)}\)
\(=\frac{3\left(x^2-2xy+y^2\right)}{5}.\frac{x+y}{10\left(x-y\right)}\)
\(=\frac{3\left(x-y\right)^2}{5}.\frac{x+y}{10\left(x-y\right)}\)
\(=\frac{3\left(x-y\right)}{5}.\frac{x+y}{10}\)
\(=\frac{3x^2-3y^2}{50}\)
c) \(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)-\frac{x^2-y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\frac{y-x}{xy}-\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^2}\)
\(=\frac{2}{y-x}-\frac{x+y}{x-y}\)
\(=\frac{2}{y-x}+\frac{x+y}{y-x}\)
\(=\frac{x+y+2}{y-x}\)
d) \(\frac{\frac{x-y}{x+y}-\frac{x+y}{x-y}}{1-\frac{x^2}{x^2+y^2}}\)
\(=\frac{\frac{x^2-2xy+y^2}{x^2-y^2}-\frac{x^2+2xy+y^2}{x^2-y^2}}{\frac{y^2}{x^2+y^2}}\)
\(=\frac{\frac{2x^2+2y^2}{x^2-y^2}}{\frac{y^2}{x^2+y^2}}\)
\(=\frac{2x^2+2y^2}{x^2-y^2}.\frac{x^2+y^2}{y^2}\)
\(=\frac{2x^4+4x^2y^2+2y^4}{x^2y^2-y^4}\)
Thực hiện các phép tính sau :
a) \(\left(\dfrac{5x+y}{x^2-5xy}+\dfrac{5x-y}{x^2+5xy}\right).\dfrac{x^2-25y^2}{x^2+y^2}\)
b) \(\dfrac{4xy}{y^2-x^2}:\left(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}\right)\)
c) \(\left[\dfrac{1}{\left(2x-y\right)^2}+\dfrac{2}{4x^2-y^2}+\dfrac{1}{\left(2x+y\right)^2}\right].\dfrac{4x^2+4xy+y^2}{16x}\)
d) \(\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\)
\(a.\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}\)
\(b.\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=-5y-9+xy\)
\(c.\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=xy-y-x\)
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
Tính giá trị của biểu thức:
a) \(3{x^2}y - \left( {3xy - 6{x^2}y} \right) + \left( {5xy - 9{x^2}y} \right)\) tại \(x = \frac{2}{3}\), \(y = - \frac{3}{4}\)
b) \(x\left( {x - 2y} \right) - y\left( {{y^2} - 2x} \right)\) tại \(x = 5\), \(y = 3\)
`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`
`= 2xy`.
Thay `x = 2/3; y = -3/4` vào BT:
`2 . 2/3 . -3/4 = -1.`
`b, x(x-2y) - y(y^2-2x)`
`= x^2 - 2xy - y^3 + 2xy`
`= x^2 - y^3`
Thay `x = 5; y =3` vào BT:
`= 5^2 - 3^3 = 25 - 27 = -2`
a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)
\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)
\(=2xy\)
Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:
\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)
b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)
\(=x^2-2xy-y^3+2xy\)
\(=x^2-y^3\)
Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)