Tìm GTLN của \(A=\frac{8x^2+6xy}{x^2+y^2}\)
tìm Min của \(M=\frac{8x^2+6xy}{x^2+y^2}\)
Vậy .....................
Tìm MIN \(M=\frac{8x^2+6xy}{x^2+y^2}=\frac{-\left(x^2+y^2\right)+\left(9x^2+6xy+y^2\right)}{x^2+y^2}=\frac{\left(3x+y\right)^2}{x^2+y^2}-1\ge-1\)Vậy ..........................
tìm min của \(M=\frac{8x^2+6xy}{x^2+y^2}\)
Ta có:
\(M=\frac{8x^2+6xy}{x^2+y^2}\)
\(=\frac{9x^2+6xy+y^2-\left(x^2+y^2\right)}{x^2+y^2}\)
\(=\frac{\left(3x+y\right)^2}{x^2+y^2}-1\)
\(\ge-1\)
Dấu bằng xảy ra khi 3x=-y
Bài 1: Tìm gtln của các bth
a)A= -x^2 – 4x -2
b)B= -2x^2 – 3x +5
c)C= (2-x)(x + 4)
d)D= -8x^2 + 4xy – y^2 +3
Bài 2:CMR: Giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a)A=25x^2 – 20x + 7
b)B=9x^2 – 6xy + 2y^2 + 1
c)E=x^2 – 2x + y^2 – 4y +6
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
Tìm giá trị nhỏ nhất và giá trị lớn nhất của \(P=\frac{8x^2+6xy}{x^2+y^2}\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của \(P=\frac{8x^2+6xy}{x^2+y^2}\).
Cả tử và mẫu đồng bậc:)) Em thử nha, ko chắc..
Với y = 0 thì x khác 0 và \(P=\frac{8x^2}{x^2}=8\)
Với y khác 0, chia cả tử và mẫu của P cho y2. Ta có:
\(P=\frac{8\left(\frac{x}{y}\right)^2+6.\frac{x}{y}}{\left(\frac{x}{y}\right)^2+1}\). Đặt \(\frac{x}{y}=t\).
Thế thì: \(P=\frac{8t^2+6t}{t^2+1}\)
Bí.
biểu thức đã cho (=) (8-P)x2 + 6yx -Py2=0
tìm denta ra thì đc như sau: y2(-P2+8P+9) >=0 =) -P2+8P+9 >=0
phần còn lại bấm máy tính ra kết quả là -1=<P=<9
Min=-1 và Max=9
tìm gt của bt
6xy(xy-y^2)-8x^2(x-y)^2+5y(x^2-xy), tại x=1/2;y=2
\(A=6xy\left(xy-y^2\right)-8x^2\left(x-y\right)^2+5y\left(x^2-xy\right)\)
\(=6xy^2\left(x-y\right)-8x^2\left(x-y\right)\left(x-y\right)+5xy\left(x-y\right)\)
\(=x\left(x-y\right)\left(6y^2-8x\left(x-y\right)+5y\right)\)
\(=x\left(x-y\right)\left(6y^2-8x^2+8xy+5y\right)\)
\(=x\left(x-y\right)\left[2\left(3y+2x\right)\left(y-2x\right)+16xy+5y\right]\)
Thay x=1/2; y =2 ta được
\(A=\frac{1}{2}\left(\frac{1}{2}-2\right)\left[0+16\cdot\frac{1}{2}\cdot2+5\cdot2\right]=-\frac{1}{2}\cdot\frac{3}{2}\cdot26=-\frac{39}{2}\).
6xy ( xy - y2 ) - 8x2 ( x - y )2 + 5y ( x2 - xy )
= 6x2y2 - 6xy3 - 8x3 + 8x2y + 5yx2 - 5xy2
= xy ( 6xy - 6y2 + 8x + 5x - 5y ) - 8x3
Thay x= \(\frac{1}{2}\) ; y = 2
= 6 - 6.4 + 8. \(\frac{1}{2}\) + 5. \(\frac{1}{2}\) - 5.2 - 8.8
=> 6 - 24 + 4 + 2,5 - 10 - 64
= - 85,5
\(6xy\left(xy-ỳ^2\right)-8x^2\left(x-y\right)^2+5y\left(x^2-xy\right)\)
\(=6x^2y^2-6xy^3-8x^2\cdot\left(x^2-y^2\right)+5x^2y-5xy^2\)
\(=6x^2y^2-6xy^3-8x^4+8x^2y^2+5x^2y-5xy^2\)
\(=-8x^4+14x^2y^2+5x^2y-6xy^3-5xy^2\)
Thay \(x=\frac{1}{2};y=2\) vào đa thức \(-8x^4+14x^2y^2+5x^2y-6xy^3-5xy^2\)
\(-8\left(\frac{1}{2}\right)^4+14\left(\frac{1}{2}\right)^2\cdot2^2+5\left(\frac{1}{2}\right)^2\cdot2-6\cdot\frac{1}{2}\cdot2^3-5\cdot\frac{1}{2}\cdot2^2\)
\(=-\frac{1}{2}+14+\frac{5}{2}-24-10\)
\(=-18\)
tìm GTLN của A=\(\frac{1}{x^2-1}+\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}\)
\(A=\frac{1}{\left(x-1\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}\)
\(2A=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}=\frac{1}{x-1}-\frac{1}{x+5}\)
\(2A=\frac{x+5-x+1}{\left(x-1\right)\left(x+5\right)}=\frac{6}{x^2+4x-5}\Leftrightarrow A=\frac{3}{\left(x+2\right)^2-9}\le\frac{3}{-9}=-3\)
Max A = -3 khi x =-2 (TM)
cho \(x^2+y^2=1\) Tìm GTLN,GTNN của
P=\(\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)