Tìm GTNN của x^2-4x+y^2-y+5
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
tìm gtnn của x^2+y^2-4x+y+5
cần gấp giúp với
\(A=\)\(x^2+y^2-4x+y+5.\)
\(=\left(x^2-4x+4\right)+\left(y^2+2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A_{min}=\frac{3}{4}\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+\frac{1}{2}\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-\frac{1}{2}\end{cases}}}\)
\(x^2+y^2-4x+y+5=\left(x-2\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow Min=\frac{3}{4}\)Dấu "=" xr \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{1}{2}\end{cases}}}\)
Tìm mối liên hệ của x, y để biểu thức sau đạt GTNN. Tìm GTNN đó
P = x2 + 2xy + 4x + 4y + y2 + 5
\(P=x^2+2xy+4x+4y+y^2+5\)
\(=\left(x^2+2xy+y^2\right)+4\left(x+y\right)+5\)
\(=\left(x+y\right)^2+4\left(x+y\right)+4+1\)
\(=\left(x+y+2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x+y+2=0\)
Vậy với x + y + 2 = 0 thì Pmin = 1
p = x.x + 2.x.y+ 4.x+4.y+ y.2+5
=> P= x.(x+2+y+4)+y.(4+2) +5
mà giá trị nhỏ nhất là gì ạ?
\(P=\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+5\)
\(=\left(x+y\right)^2+4\left(x+y\right)+5\)\(\ge0+0+5=5\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=0\Leftrightarrow\orbr{\begin{cases}x=-y\\y=\left(-x\right)\end{cases}}\)
Cho x,y,z>0 sao cho x+y+z=5. Tìm gtnn của A=\(\dfrac{4x}{y^2+4}+\dfrac{4y}{z^2+4}+\dfrac{4z}{x^2+4}\)
Cho x,y,z>0 sao cho x+y+z=5. Tìm gtnn của A=\(\dfrac{4x}{y^2+4}+\dfrac{4y}{z^2+4}+\dfrac{4z}{x^2+4}\)
Tìm GTNN của: x2- 2x+y2+4x+5
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
TÌm GTNN của A= x^2-4x+y^2-y+3
Câu hỏi của Trần Quốc Bảo - Toán lớp 6 | Học trực tuyến
Ta có :
A=\(x^2-4x+y^2-y+3\)
\(=\left(x^2-2.x.2+4\right)+\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+3-4-\frac{1}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(\begin{cases}\left(x-2\right)^2\ge0\\\left(y-\frac{1}{2}\right)^2\ge0\end{cases}\)\(\forall x;y\)
\(\Rightarrow A\ge-\frac{5}{4}\)
Dẫu " = " xảy ra khi \(\begin{cases}x=2\\y=\frac{1}{2}\end{cases}\)
Vậy ............