cho tứ giác ABCD . Gọi E,F lần lượt là giao điểm của AB,CD,AD và BC; M,N,P,Q lần lượt là trung điểm của AE,EC,CF,FA. Chứng minh tứ giác MNPQ là hình bình hành. AI VẼ HÌNH GIÚP MÌNH VỚI
Cho tứ giác ABCD có AD và BC cắt nhau tại M. Gọi IJ lần lượt là trung điểm AB và CD. Gọi PQ lần lượt là giao điểm của BC,AD và IJ. Qua A,B vẽ đường thẳng song song với CD cắt IJ tại E,F. a) Chứng minh BP/PC=QA/QD b) Cho MA=4cm, MB=5cm, AD=8cm, BC=10cm. Chứng minh tam giác MAB đồng dạng với tam giác MDC CẢM ƠN!❤
cho tứ giác ABCD . Gọi E,F lần lượt là giao điểm của AB,CD,AD và BC; M,N,P,Q lần lượt là trung điểm của AE,EC,CF,FA. Chứng minh tứ giác MNPQ là hình bình hành
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là trung điểm của AE, EC, CF, FA. Khi đó MNPQ là hình gì? Giúp mik ik hình j
Cho tứ giác ABCD. Gọi E, F, K lần lượt là trung điểm của AD, BC, AC.
a) Chứng minh EK // CD và FK // AB.
b) So sánh AB + CD và 2EF
giup em voi
a) Xét ΔADC có
E là trung điểm của AD
K là trung điểm của AC
Do đó: EK là đường trung bình của ΔADC
Suy ra: EK//DC
Xét ΔABC có
K là trung điểm của AC
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔABC
Suy ra: KF//AB
cho hbh ABCD. GỌI M,N lần lượt là trung điểm của AB và CD . Gọi E là giao của AN và DM , F là giao điểm của MC và BN . C/M
a, AD=MN
b, tứ giác BCNM , MENF là hbh
c, E, F và trung điểm của MN thẳng hàng
a) Xét tứ giác AMND có
AM//ND
\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMND là hình bình hành
Suy ra: AD=MN
b) Xét tứ giác BCNM có
BM//CN
\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: BCNM là hình bình hành
Xét tứ giác AMCN có
AM//CN
\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMCN là hình bình hành
Suy ra: AN//CM
hay EN//MF
Xét tứ giác BMDN có
BM//DN
\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)
Do đó: BMDN là hình bình hành
Suy ra: BN//MD
hay NF//ME
Xét tứ giác MENF có
ME//NF(cmt)
MF//NE(cmt)
Do đó: MENF là hình bình hành
Cho tứ giác ABCD có AB không song song với CD, BC < AD. Gọi E, F lần lượt là trung điểm của đường chéo AC và BD thỏa mãn EF= AD- BC \ 2
CMR : tứ giác ABCD là hình thang
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
Cho hình bình hành ABCD .Gọi E,F,G,H lần lượt là trung điểm của AD,BC,AB,CD .Gọi M,N,P,Q lần lượt là giao điểm AH và BE , CG và BE ,DF và CG ,DF và AH .C/M
a, AH=CG
b, BE//DF
c, tứ giác MNPQ là hình gì
Lời giải:
a.
Vì $ABCD$ là hình bình hành nên $AB\parallel CD$
$\Rightarrow AG\parallel CH$
$AG=\frac{1}{2}AB; CH=\frac{1}{2}CD; AB=CD$ (theo tính chất hbh)
$\Rightarrow AG=CH$
Tứ giác $AGCH$ có $AG=CH$ và $AG\parallel CH$ nên đây là hbh
$\Rightarrow AH=CG$
b.
Hoàn toàn tương tự phần a, ta cm được $BF=DE$ và $BF\parallel DE$ nên $BFDE$ là hình bình hành
$\Rightarrow BE\parallel DF$
c.
Vì $BE\parallel DF$ nên $MN\parallel PQ(1)$
Vì $AGCH$ là hình bình hành nên $AH\parallel CG$
$\Rightarrow MQ\parallel NP(2)$
Từ $(1);(2)\Rightarrow MNPQ$ là hình bình hành.
Cho hình bình hành ABCD .Gọi M,N lần lượt là trung điểm của AB và CD .Gọi E là giao điểm của AN và DM ,F là giao điểm của MC và BN .Chứng minh
a, AD=MN
b, Tứ giác BCNM ,MENF là hình bình hành
c, E,F và trung điểm của MN thẳng hàng
a) Xét tứ giác AMND có
AM//DN
AM=DN
Do đó: AMND là hình bình hành
Suy ra: AD=NM
b) Xét tứ giác BCNM có
BM//CN
BM=CN
Do đó: BCNM là hình bình hành
Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AC và BC. Trên BD lấy điểm K sao cho BK= 2KD. Gọi E là giao điểm của JK và CD; F là giao điểm của IE và AD. Tìm giao điểm của AD và (IJK).
A. Điểm I
B. Điểm E
C. Điểm F
D. Điểm K