Bài 1 : Cho tứ giác ABCD. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC; M, N, P, Q lần lượt là trung điểm của AE, EC, CF, FA. Chứng minh tứ giác MNPQ là hình bình hành.
Bài 2 : Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm BF và CD; N là giao điểm của DE và AB. Chứng minh rằng :
a) M, N theo thứ tự là trung điểm của CD, AB
b) EMFN là hình bình hành
Cần lắm bạn giả đc bài <3
Cho hình bình hành ABCD .Gọi E,F,G,H lần lượt là trung điểm của AD,BC,AB,CD .Gọi M,N,P,Q lần lượt là giao điểm AH và BE , CG và BE ,DF và CG ,DF và AH .C/M
a, AH=CG
b, BE//DF
c, tứ giác MNPQ là hình gì
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Khi đó tứ giác MNPQ là hình gì? Tại sao?
Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. a) Chứng minh rằng MNPQ là hình bình hành. b) Gọi I là giao điểm của MP và QN. Gọi E là điểm trên tia IA sao cho EA = 2AI và J là giao điểm của tia MA và EP. Chứng minh rằng J là trung điểm của EP.
Cho hình ABCD, gọi M, N, P, Q lần lượt là trung điểm Của AB, BC, CD, DA a, Tứ Giác MNPQ là hình gì? Vì sao? b, Cần thêm điều kiện gì của AB và CD để tứ giác MNPQ là hình thoi
cho hình thang abcd (ab//cd) có cd=2ab gọi mnpq lần lượt là trung điểm của các cạnh ab bc da a) tứ giác abpd là hình gì? vì sao? b)tứ giác mnpq là hình gì? vì sao? c)gọi e là giao điểm của bd và ap , chứng minh ba điểm qne thẳng hàng
Hình thang ABCD (AB // CD) có DC = 2AB. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a. Chứng minh các tứ giác ABPD, MNPQ là hình bình hành
b. Tìm điều kiện của hình thang ABCD để MNPQ là hình thoi.
c. Gọi E là giao điểm của BD và AP. Chứng minh ba điểm Q, N, E thẳng hàng
Cho tứ giác ABCD có AD=BC. Gọi M,N,P,Q lần lượt là trung điểm của AB, AC, CD, BD.
a) Tứ giác MNPQ là hình gì?
b) Tứ giác ABCD cần thêm điều kiện gì để MNPQ là hình vuông?
cho hình bình hành ABCD . Trên 2 cạnh AB và CD lần lượt lấy 2 điểm E và F sao cho AE = CF . Trên 2 cạnh AD và BC lần lượt lấy điểm H và G sao cho AH = CG .
a. Cmr EH = GF
b. Cmr tứ giác EHFG là hình bình hành
c. Gọi I là trung điểm của BD , Cmr 3 điểm E,I,F thẳng hàng