Tìm x , biết :
a.(3x + 4)3 = (9x - 8)(3x2 -8)
b.(4x - 5)3 = (2x + 5)(16x2 - 25)
Tìm x, biết
a) (3x + 4)3 = (9x - 8)(3x2 - 8)
b) (4x - 5)3 = (2x + 5)(16x2 - 25)
b) ta có \(\left(4x-5\right)^3-\left(2x+5\right)\left(16x^2-25\right)=0\)
\(\left(4x-5\right)^3-\left(2x+5\right)\left(4x+5\right)\left(4x-5\right)=0\)
\(\left(4x-5\right)\left[\left(4x-5\right)^2-\left(2x+5\right)\left(4x+5\right)\right]=0\)
\(\left(4x-5\right)\left(16x^2-40x+5^2-8x^2-10x-20x-5^2\right)=0\)
\(\left(4x-5\right)\left(8x^2-70x\right)=0\)
=> \(\orbr{\begin{cases}4x-5=0\\8x^2-70x=0\end{cases}=>\orbr{\begin{cases}4x=5\\x\left(8x-70\right)=0\end{cases}< =>}\orbr{\begin{cases}x=\frac{5}{4}\\\orbr{\begin{cases}x=0\\8x-70=0=>x=\frac{35}{4}\end{cases}}\end{cases}}}\) \(\orbr{\begin{cases}4x-5=0\\8x^2-70x=0\end{cases}< =>\orbr{\begin{cases}x=\frac{5}{4}\\x\left(8x-70\right)=0\end{cases}\orbr{\begin{cases}x=\frac{5}{4}\\\orbr{\begin{cases}x=0\\8x-70=0=>x=\frac{35}{4}\end{cases}}\end{cases}}}}\)
\(\orbr{\begin{cases}4x-5=0\\8x^2-70x=0\end{cases}=>\orbr{\begin{cases}x=\frac{5}{4}\\x\left(8x-70\right)=0\end{cases}}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{35}{4}\end{cases}}\) Vậy \(\orbr{\begin{cases}x=\frac{5}{4}\\x=0\end{cases}}\) hoặc \(x=\frac{35}{4}\)
tìm x:
a)(3x+4)3=(9x-8)(3x2-8)
b)(4x-5)3=(2x+5)(16x2-25)
Tìm x, biết:
a) 2(5x-8)-3(4x-5) = 4(3x-4) + 11;
b) 2 x ( 6 x - 2 x 2 ) + 3 x 2 ( x - 4 ) = 8;
c) 2 ( x 3 - 1 ) - 2 x 2 ( x + 2 x 4 ) + ( 4 x 5 + 4 ) x = 6;
d)(2x)2(4x-2)-(x3 -8x2) = 15.
a) x = 2 7 b) x = 2.
c) x = 2 d) x = 1.
Tìm x biết :
a)(3x-3)+(x-2)=(2x-2)-(x-1).
b)(4x-3)+(3x+5)=3x-2.
c)(6x-8)-5(x+2)=2x-12.
d)(9x-2)-4(2x+5)=-12.
a)
<=> 3x - 3 + x - 2 = 2x - 2 - x + 1
<=> 3x + x - 2x + x = -2 + 1 + 3 + 2
<=> 3x = 4
<=> x = 4/3
Các câu sau làm tương tự
\(\left(3x-3\right)+\left(x-2\right)=\left(2x-2\right)-\left(x-1\right)\)
<=> \(3x-3+x-2=2x-2-x+1\)
<=> \(4x-5=x-1\)
<=> \(3x=4\)
<=> \(x=\frac{4}{3}\)
Vậy....
Câu 1: Phân tích thành nhân tử
a) (4x - 6y)^2 - (8xy -3)^2
b) 16x^2 - 49y^2
c) 36x^2 +60x + 25
d) (2x-y)(x-y) - (3y - 4x)^2 + (y-2x)(2y-3x)
Câu 2: Thu gọn đa thức
M = (3x - 4)(9x^2-12x+16)+ (6x-8)^2
Câu 3: Tìm x
a) (3x + 4)^3 = (9x - 8)(3x^2 - 8)
b)(4x-5)^3 = (2x+5)(16x^2-25)
Câu 4:
Cho biết tồn tại các số thực a,b khác 0 thỏa a+ 1/b = 1 và a^2 + 1/b^2 =3
Tính giá trị của biểu thức N = \(\frac{a^4b^4+a^2b^2+1}{b^4}\)
1.a) (4x - 6y)2 - (8xy - 5)2 = (4x - 6y - 8xy + 5)(4x - 6y + 8xy - 5)
b) 16x2 - 49y2 = (4x)2 - (7y)2 = (4x - 7y)(4x + 7y)
c) 36x2 + 60x + 25 = (6x)2 + 2.6x.5 + 52 = (6x + 5)2
d) (2x - y)(x - y) - (3y - 4x)2 + (y - 2x)(2y - 3x) = (y - 2x)(y - x) + (y - 2x)(2y - 3x) - (3y - 4x)2
= (y - 2x)[(y - x) + (2y - 3x)] - (3y - 4x)2 = (y - 2x)(3y - 4x) - (3y - 4x)2 = (3y - 4x)[(y - 2x) - (3y - 4x)] = 2(3y - 4x)(x - y)
2.M = (3x - 4)(9x2 - 12x + 16) + (6x - 8)2 = (3x - 4)[(3x)2 - 2.3x.4 + 42] + [2(3x - 4)]2 = (3x - 4)(3x - 4)2 + 4(3x - 4)2
= (3x - 4)2(3x - 4 + 4) = 3x(3x - 4)2
a) =(4x-6y-8xy+3)(4x-6y+8xy-3)
=[4x(1-2y)+3(1-2y)][4x(1+2y)-3(1+2y)]
=(4x+3)(4x-3)(1-2y)(1+2y)
Tìm x:
a) 5(2x - 1) + 4(8 - 3x)= -5
b) 3x(12x - 4) - 9x(4x - 3)= 30
\(5\left(2x-1\right)+4\left(8-3x\right)=-5\)
\(10x-5+32-12x=-5\)
\(-2x=5-5+32\)
\(x=\frac{32}{-2}\)
\(x=-16\)
\(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=\frac{30}{15}\)
x = 2
Tìm x biết
a) (x+2).(x+3) - (x-2).(x+5)=10
b) (3x+2). (2x+9) - (x+2). (8x+11)=(x+1).(3-2x)
c) 3.(2x-1).(3x-1)-(2x-3).(9x-1)=0
d) (5x-8).(4x-5)-(3x-4).(2x+12)=12
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
a)(-3x2+5x2-9x+15):(-3x+5)
b)(x4-2x3+2x-1):(x2-1)
c)(5x4+9x3-2x2-4x-8):(x-1)
d)(5x3+14x2+12x+8):(x+2)
b: \(\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
c: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=5x^3+14x^2+12x+8\)
rut gon
a,3x(2x-7)-3x(4x-5)
b,(-7x+8)(-2x+3)-7x(2x-4)
c,(2x-3)(3x2-2x+4)-(2x-3)(3x+4)
d,(-2+7)(3x-6)-(4x-5)(2x-6)