Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 0:40

a: \(A=\left(x^2+x+1-x\right):\dfrac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(x^2+1\right)\cdot\left(1-x\right)\)

b: Để A<0 thì 1-x<0

=>x>1

c: |x-4|=5

=>x-4=5 hoặc x-4=-5

=>x=9(nhận) hoặc x=-1(loại)

Thay x=9 vào A, ta được:

\(A=\left(9^2+1\right)\left(1-9\right)=82\cdot\left(-8\right)=-656\)

Duong Thi Nhuong
Xem chi tiết
Đặng Minh Triều
18 tháng 6 2016 lúc 9:48

\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right):\frac{4}{4x^2-4}\)

\(=\left(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+2\right)}+\frac{6}{2.\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\frac{4}{4\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}.\left(x-1\right)\left(x+1\right)=\frac{4}{2}=2\)

Đặng Minh Triều
18 tháng 6 2016 lúc 9:48

thêm ĐK: x khác 1 ; -1

Nguyễn Thị Anh
18 tháng 6 2016 lúc 9:50

tập xđ: x khác (-1,1)

A=(\(\frac{-x^2-2x-6-x^2-2x+3}{2\left(1-x^2\right)}\):\(\frac{5}{4\left(1-x^2\right)}\)

A=\(\frac{-4x^2-8x-6}{5}\)

Zi Heo
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 14:14

\(a,ĐK:x\ne1\\ b,A=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}=\dfrac{x+1}{x-1}\\ c,A=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\left(tm\right)\)

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 1:01

\(A=\left(\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}+\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}\right):\dfrac{x-1}{x^3}\)

\(=\dfrac{x^2+3}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)^2}\)

Duong Thi Nhuong TH Hoa...
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Phương An
8 tháng 9 2016 lúc 9:34

\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)

\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)

\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)

\(=\frac{x}{x-1}\)

Duong Thi Nhuong
Xem chi tiết
Huỳnh Thoại
20 tháng 8 2016 lúc 15:47

a)ĐKXĐ:x>=0;x khác 9

A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)\(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]

 A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)\(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]

A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]

A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)

 

 

Duong Thi Nhuong
Xem chi tiết
Đặng Minh Triều
18 tháng 6 2016 lúc 9:53

ĐK: x khác 1 ; -1

\(B=\frac{1}{x-1}-\frac{x^3-x}{x^2+1}.\left(\frac{1}{1-2x+x^2}+\frac{1}{1-x^2}\right)\)

\(=\frac{1}{x-1}-\frac{x^3-x}{x^2+1}.\left(\frac{1+x}{\left(1-x\right)^2\left(1+x\right)}+\frac{1-x}{\left(1-x\right)^2\left(1+x\right)}\right)\)

=\(\frac{1}{x-1}-\frac{x\left(x-1\right)\left(x+1\right)}{x^2+1}.\frac{2}{\left(1-x\right)^2\left(1+x\right)}=\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(1-x\right)}\)

\(=\frac{x^2+1}{\left(x^2+1\right)\left(x-1\right)}+\frac{2x}{\left(x^2+1\right)\left(x-1\right)}=\frac{x^2+2x+1}{\left(x^2+1\right)\left(x-1\right)}=\)

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2022 lúc 0:54

a: ĐKXĐ: \(a\notin\left\{0;1;-1\right\}\)

\(A=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a^2}{a^2+1}\cdot\dfrac{a^2+1}{a\left(a+1\right)}\)

\(=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a}{a+1}\)

\(=\dfrac{a^2-a^2+a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a^2-1}\)

b: Để A=3 thì \(3a^2-3=a\)

\(\Leftrightarrow2a^2=3\)

hay \(a\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)