chứng tỏ rằng:A=75(42004+42003+...+42+4+1)+25\(⋮\)100
Chứng tỏ rằng :
A = 75 . ( 42004 + 42003 + ...... + 42 + 4 + 1 ) + 25 là số chia hết cho 100
c/m: A = 75.(42004+ 42003+ .... + 42+4+1) + 25 chia hết cho 100
A=\(75.\left(4^{2004}+4^{2003}+4^2+4+1\right)+25\)
A=\(75.\left(4^{2005}-1\right):3+25\)
A=\(25.\left(4^{2005}-1+1\right)\)
A=\(25.4^{2005}⋮100\)
Nhớ tick cho mình nhé!
chứng tỏ rằng:A=75(42004+42003+...+42+4+1)+25 chia hết 100
A=75(42004+42003+...+42+4+1)+25
=25.[3.(42004+42003+...+42+4+1)+1]
=25.(3.42004+3.42003+...+3.42+3.4+3+1)
=25.(3.42004+3.42003+...+3.42+3.4+4)
=25.4.(3.42003+3.42002+...+3.4+3+1)
=100.(3.42003+3.42002+...+3.4+3+1)chia hết cho 100
=>dpcm
2. Chứng tỏ rằng M=75.(42021+42020+....+42+4+1)+ 25 chia hết cho 100
\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)
\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)
\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)
1)chứng tỏ rằng:A = 75.(42004+42003+...+42+4+1)+25 chia het cho 100
2)độ dài ba cạnh của tam giác tỉ lệ với 2;3;4.Ba chieu cao tuong ung voi ba canh do ti le voi ba so nao?
Bài 1: Giải:
Đặt \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(\Rightarrow4B=4\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\)
\(=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(\Rightarrow4B-B=\left(4^{2005}+4^{2004}+...+4^2+4\right)-\left(4^{2004}+4^{2003}+...+4+1\right)\)
\(\Rightarrow3B=4^{2005}-1\Rightarrow B=\dfrac{4^{2005}-1}{3}\)
Do đó:
\(A=75.\dfrac{4^{2005}-1}{3}+25=25\left(4^{2005}-1+1\right)\)
\(=25.4^{2005}=25.4.4^{2004}=100.4^{2004}⋮100\) (Đpcm)
A, Chứng tỏ rằng: M = 75.(42017+ 42016 +42 +4 + 1) +25 chia hết cho 10² 6+.
a) 1/3 + 1/2 : x = -4
b) 2. ( x - 2)^2= 49/8
bài 2:
So sánh 3^100 và 5^200
Bài 3:
chứng tỏ rằng: 75^20 = 42^10 . 25^11
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r
C = 75 . ( $4^{2019}$ + $4^{2018}$ + $4^{2017}$ + ... + $4^{2}$ + 4 +1 ) + 25
Chứng tỏ C chia hết cho 100
Đặt \(D=1+4+...+4^{2019}\)
\(\Leftrightarrow4D=4+4^2+...+4^{2020}\)
\(\Leftrightarrow D=\dfrac{4^{2020}-1}{3}\)
\(C=75\cdot D+25\)
\(=25\left(4^{2020}-1\right)+25=25\cdot4\cdot4^{2019}⋮100\)
Chứng tỏ rằng A= 75( 4^2023+ 4^2022+4^2021+...+ 4^2+ 4+ 1)+ 25 chia hết cho 100
Đặt \(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)
Đặt \(B=4^{2023}+4^{2022}+...+4^2+4+1\)
=>\(4B=4^{2024}+4^{2023}+...+4^3+4^2+4\)
=>\(4B-B=4^{2024}+4^{2023}+...+4^3+4^2+4-4^{2023}-4^{2022}-...-4^2-4-1\)
=>\(3B=4^{2024}-1\)
=>\(B=\dfrac{4^{2024}-1}{3}\)
\(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)
\(=75\cdot\dfrac{4^{2024}-1}{3}+25\)
\(=25\cdot\left(4^{2024}-1\right)+25\)
\(=25\cdot4^{2024}\)
\(=25\cdot4\cdot4^{2023}=100\cdot4^{2023}⋮100\)