c/m: A = 75.(42004+ 42003+ .... + 42+4+1) + 25 chia hết cho 100
Chứng tỏ A = \(75\times\left(4^{2004}+4^{2003}+.....+4^2+4+1\right)+25\) là số chia hết cho 100
a,Chứng tỏ rằng: M=75.(\(4^{2107}\)+\(4^{2016}\)+...+\(4^2\)+4+1)+25 chia hết cho \(10^2\)
b,cho tích a.b là số chính phương và (a,b)=1.Chứng minh rằng a và b đều là số chính phương
c/m: A = 75.(42004+ 42003+ .... + 42+4+1) + 25 chia hết cho 100
a)Chứng tỏ rằng 91945-21930 chia hết cho 5
b)Chứng tỏ rằng 42010 +22014 chia hết cho 10
Câu 1: Cho dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tính M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2: Chứng minh rằng:
A= 75.(42004+42003+.....+42+4+1)+25 là số chia hết cho 100
Đề:
a) Chứng minh rằng với mọi số tự nhiên n thì \(6^{2n+1}+5^{n+2}\) chia hết cho 3.
b) Tìm số dư trong phép chia \(2^{100}\) cho 9; cho 25.
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
với a, b là các số nguyên dương sao cho a+2 và b+2018 chia hết cho 6. Chứng minh rằng: 4^a+a+b chia hết cho 6