a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
a/ Ta có :
\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)
\(\Leftrightarrowđpcm\)
Chứng tỏ rằng :
A = 75 . ( 42004 + 42003 + ...... + 42 + 4 + 1 ) + 25 là số chia hết cho 100
4. chứng minh rằng
a) CMR tổng 5 số tự nhiên chia hết cho 5
b)CMR n2+n chia hết cho 2 với n thuộc N
c) CMR a2b + b2a chia hết cho 2 với a,b thuộc N
d) CMR 51n + 47102 chia hết cho 10 (n thuộc N)
CMR: chứng minh rằng
a,Chứng tỏ rằng: M=75.(\(4^{2107}\)+\(4^{2016}\)+...+\(4^2\)+4+1)+25 chia hết cho \(10^2\)
b,cho tích a.b là số chính phương và (a,b)=1.Chứng minh rằng a và b đều là số chính phương
Bài 1:
a) Chứng tỏ rằng: A= \(3^{x+2}+3^{x+1}+3^x\)chia hết cho 39
b)Tìm x biết: \(5^{x+2}+5^{x+1}+5^x\)=105
Chứng tỏ 91945-21930chia hết cho 5
a) Số A=101998-4 có chia hết cho 3 không? Có chia hết cho 9 không?
b) Chứng minh rằng 3638+4133 chia hết cho 7
a, Chứng minh rằng : Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
b, Cho a , b là các số nguyên . Chứng minh rằng : Nếu ( 2a + 3b ) chia hết cho 17 thì ( 9a + 5b ) chia hết cho 17
Cho biểu thức: \(P\left(x\right)=x^3+\text{ax}+b\). Biết rằng P(0) và P(1) đều chia hết cho 3. Chứng tỏ rằng P(x) có giá trị là bội của 3 với mọi giá trị nguyên của x
Cho biểu thức: \(P\left(x\right)=x^3+\text{ax}+b\).Biết rằng P(0) và P(1) đều chia hết cho 3. Chứng tỏ rằng P(x) có giá trị là bội của 3 với mọi giá trị nguyên của x