chứng minh nếu a;b nguyên tố <3 thì a^2-b^2 chia hết cho 24
Cho góc nhọn xOy. Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Từ A vẽ đường vuông góc với Ox cắt Oy tại C; từ B vẽ đường vuông góc với Oy cắt Ox tại D.
a) Chứng minh: AC=BD
b) Chứng minh: AD=BC
c) Gọi I là giao điểm của AC và BD. Chứng minh: OI là tia phân giác của góc xOy
d) Chứng minh: OI là đường trung trực của đoạn AB
e) Chứng minh: AB // CD.
Mình đang cần gấp cảm ơn nhiều nha
a/ Xét tam giác OAC và tam giác OBD có
O : góc chung
OA = OB (GT)
OC = OD (GT)
=> tam giác OAC = tam giác OBD ( cạnh góc cạnh )
=>AC = BD (2 cạnh tương ứng)
b/ Xét tam giác IAD và IBC có
-góc C = góc D (vì tam giác OAC=tam giác OBD)
-A = B = 900
-AI = BI (vì AC = BD)
=> tam giác IAD = tam giác IBC (góc cạnh góc)
=>AD=BC (2 cạnh tương ứng)
c/ Xét tam giác OAI và tam giác OBI có
-OA = OB (GT)
-góc AIO = góc OIB
-A = B = 900
=> tam giác OAI = tam giác OBI (cạnh góc cạnh)
=> góc AOI = góc IOB (2 góc tương ứng)
Vậy OI là phân giác của góc O
d/ Gọi OI và AB cắt nhau tại M
Xét tam giác OAM và tam giác OBM có
-AOM = BOM
-OA = OB
-OM: cạnh chung
=> tam giác OAM = tam giác OBM (cạnh góc cạnh)
=> AMO = BMO
Ta có: AMO + BMO = 1800 (kề bù)
Mà AMO = BMO
=> AMO = BMO = 1/2 1800 = 900
Vậy OI là đường trung trực của đoạn AB
e/ Gọi phân giác của góc O cắt CD tại N
Xét tam giác INC = tam giác IND có
IN: cạnh chung
DIN = CIN
ID = IC
=> tam giác INC = tam giác IND (cạnh góc cạnh)
=> INC = IND
Ta có; IND + INC =1800 (kề bù)
Mà INC = IND
=> INC =IND = 1/2 1800 = 900
=> IN là trung trực của CD
Ta có: IN là trung trực của CD
OI là trung trực của AB
=> AB//CD
Cho tỉ lệ thức a/b = c/d
Chứng minh rằng : ( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )
(a+2c)(b+d)=(a+c)(b+2d)
<=> ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd
<=> bc - ad = 0. (1)
Mà a/b=c/d <=> ad=bc => (1) luôn đúng. => đpcm
Từ ( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )
\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)\(\Leftrightarrow\frac{bk+2dk}{b+2d}=\frac{bk+dk}{b+d}\)
Xét VT \(\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)
Xét VP \(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2) -->Đpcm
Cho a chia hết cho b ;b chia hết cho a; C hứng minh a=b hoặc a=-b
Lời giải:
$a,b$ đều là các số chia nên khác $0$.
$a\vdots b\Rightarrow |a|\geq |b|(1)$
$b\vdots a\Rightarrow |b|\geq |a|(2)$
Từ $(1); (2) \Rightarrow |a|=|b|$
$\Rightarrow a=b$ hoặc $a=-b$
Cho a+5b chia hết cho 7.C hứng minh 10a+b cũng chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
Chứng minh rằng : 2^5 < 6^2 < 3^5.
25 = 22.23 < 22.32 = 62 = 22.32 < 32.32 < 35
Vậy 25 < 62 < 35 (đpcm)
chứng minh bất đẳng thức \(\frac{1}{\sqrt{AB}}>\frac{2}{A+B}với\) A,B>0 A khác B
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{\sqrt{AB}}=\frac{2}{2\sqrt{AB}}\ge\frac{2}{A+B}\)(đpcm)
p/s: tham khảo
chúc bn hk tốt
Cho 3 số dương a,b,c thoả mãn a+b+c=1. C hứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))>=\(3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
Do đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)>=\(\frac{9}{a+b+c}=9\)(không phải chỉ >=1 đâu bạn nhé)
Cho tam giác ANC cân tại A. G ọi M là trung điểm AB , N là trung điểm AC . C hứng minh BN=CM
Chứng minh rằng : 5^27 < 2^63 < 5^28.
527 = (53)9 = 1259 < 1289 = (27)9 = 263
263 = (29)7 = 5127 < 6257 = (54)7 = 528