Bài 2. Chứng minh rằng tập A = {1, 2, 3, 4} là một tập hợp hữu hạn.
Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).
Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4 đỉnh của một hình vuông thì không cân bằng. Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập không tâm nếu không tồn tại 4 điểm A, B, C, D thuộc S sao cho DA = DB = DC. Nói cách khác, nếu 3 điểm A, B, C thuộc S thì tâm đường tròn ngoại tiếp của tam giác ABC không thuộc S.
Đề toán yêu cầu:
a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.
b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.
Cho 2 tập A, B không giao nhau. Chứng minh rằng \(\left|A\cup B\right|=\left|A\right|+\left|B\right|\)
(Ở đây kí hiệu \(\left|X\right|\) có nghĩa là số phần tử của tập hữu hạn X)
Cho tập hợp A = {1; 2; 3; ...; 25} và B là tập con chứa 17 phần tử của A. Chứng minh rằng trong B có hai phần tử mà tích của chúng là một số chính phương.Help me
Chỉ mình tập hợp hữu hạn là gì ?là một tập hợp có một số hữu hạn các phần tử ( ý của cái này nghĩa là gì ạ mình chứa hiểu ) . Lấy ví dụ nhá
Trong toán học, một tập hợp hữu hạn là một tập hợp có một số hữu hạn các phần tử. Một cách không chính thức, một tập hữu hạn là một tập hợp mà có thể đếm và có thể kết thúc việc đếm. Ví dụ,
là một tập hợp hữu hạn có 5 phần tử. Số phần tử của một tập hợp hữu hạn là một số tự nhiên (một số nguyên không âm) và được gọi là lực lượng của tập hợp đó. Một tập hợp mà không hữu hạn được gọi là tập hợp vô hạn. Ví dụ, tập hợp tất cả các số nguyên dương là vô hạn:
Tập hợp hữu hạn đặc biệt quan trọng trong toán học tổ hợp, môn toán học nghiên cứu về phép đếm. Nhiều bài toán liên quan đến các tập hữu hạn dựa vào nguyên lý ngăn kéo Dirichlet, chỉ ra rằng không thể tồn tại một đơn ánh từ một tập hợp hữu hạn lớn hơn vào một tập hợp hữu hạn nhỏ hơn.
Tham khảo:
Trong toán học, một tập hợp hữu hạn là một tập hợp có một số hữu hạn các phần tử. Một cách không chính thức, một tập hữu hạn là một tập hợp mà có thể đếm và có thể kết thúc việc đếm
Hàm số u(n) = n3 xác định trên tập hợp M = {1; 2; 3; 4; 5} là một dãy số hữu hạn. Tìm số hạng đầu, số hạng cuối và viết dãy số trên dưới dạng khai triển.
Số hạng đầu của khai triển là u1 = u(1) = 13 = 1.
Số hạng cuối của khai triển là u5 = u(5) = 53 = 125.
Dãy số được viết dưới dạng khai triển là: 1; 8; 27; 64; 125.
bài tập 1 cho A = a - b + c; B = -a + b - c với a,b,c thuộc Z. Chứng minh rằng: A và B là hai số đối nhau
bài tập 2 tính giá trị biểu thức: A-= 1 + 2 + 3 + ... + 2015
bài tập 3 viết tập hợp: tập hợp A các số tự nhiên có hai chữ số trong đó có chữ số hàng chục lớn hơn chữ số hàng đơn vị là 3
bài tập 4 trong đợt dự thi hội khỏe phù đổng, kết quả điều tra ở một lớp cho thấy có 25 hs thích đá bóng, 22hs thích điền kinh, 24 hs thích cầu long, 14 hs thích bóng đá và điền kinh, 16 hs thích bóng đá và cầu lông, 15hs thích cầu lông và điền kinh, 9 hs thích cả 3 môn, còn lại là 6 hs thích cờ vua. Hỏi lớp có bao nhiêu học sinh?
A=a-b+c;B=-a+b-c
giả sử A và B đối nhau thì A+B =0
=>A+B=a-b+c+(-a)+b-c=0 vì trong này cả 2 về đề có a,b,c đối nhau nên tổng bằng 0 => A và B đối nhau
bài tập 2 :
A=1+2+3+4+5+...+2015
A={[(2015-1)+1].(2015+1]}:2=2031120
bài tập 3:
A=30;41;52;63;74;85;96
Hãy chứng minh rằng tập hợp các số nguyên tố là vô hạn
Ta hãy : G/S : Tập hợp số nguyên tố là hữu hạn.
G/S : Tập hợp các số nguyên tố đó là : \(x_1;x_2;x_3;.....;x_n\)
Xét với dãy số : \(x_1.x_2.x_3......x_n+1\)
Ta thấy: \(x_1;x_x;x_3;.....;x_n\) đều là các số nguyên tố.
\(\Rightarrow x_1.x_2.x_3......x_n+1>x_1+x_2+x_3+.....+x_n\)
Ta thấy : \(x_1.x_2.x_3.......x_n+1⋮̸x_1;x_2;x_3;.....;x_n\)
Từ 2 điều trên : \(\Rightarrow x_1.x_2.x_3........x_n+1\) là một số nguyên tố.
Suy ra : G/S sai.
\(\Rightarrowđpcm\)
1. Tập hợp số tự nhiên, kí hiệu N
N={0, 1, 2, 3, ..}.
2. Tập hợp số nguyên, kí hiệu là Z
Z={…, -3, -2, -1, 0, 1, 2, 3, …}.
Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.
Tập hợp các số nguyên dương kí hiệu là N*
3. Tập hợp số hữu tỉ, kí hiệu là Q
Q={ a/b; a, b∈Z, b≠0}
Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô hạn tuần hoàn.
4. Tập hợp số thực, kí hiệu là R
Một số được biểu diễn bằng một số thập phân vô hạn không tuần hoàn được gọi là một số vô tỉ. Tập hợp các số vô tỉ kí hiệu là I. Tập hợp số thực gồm các số hữ tỉ và các số vô tỉ.
R = Q ∪ I.
5. Một số tập hợp con của tập hợp số thực.
+ Đoạn [a, b] ={x ∈ R / a ≤ x ≤ b}
+ Khoảng (a; b) ={x ∈ R / a < x < b}
– Nửa khoảng [a, b) = {x ∈ R / a ≤ x < b}
– Nửa khoảng (a, b] ={x ∈ R / a < x ≤ b}
– Nửa khoảng [a; +∞) = {x ∈ R/ x ≥ a}
– Nửa khoảng (-∞; a] = {x ∈ R / x ≤a}
– Khoảng (a; +∞) = {x ∈ R / x >a}
– Khoảng (-∞; a) = {x ∈R/ x<a}.
Luyện trắc nghiệmTrao đổi bàiđây nữa ạ: