tìm gtln của
F=\(x+x^2+x^3+...+x^12015+2015(1+x^12015)\)
x<=0
giup minh voi
Chứng minh rằng: 12015 + 22015 + ..... + 20152015 chia hết cho 1 + 2 + ... + 2015.
Câu 1: Tìm GTNN của E = x- \(\sqrt{x-2015}\)
Câu 2: tìm GTLN của C= \(\sqrt{x}\)-x
Câu 3 :
Câu 4:
Câu 5
Câu 2:
\(C=-x+\sqrt{x}\)
\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
tìm STN x lớn nhất để biểu thức sau có GTNN và GTNN đó = bao nhiêu?
A=(x-2016).(x-2015).(x-2014)......(x-2).(x-1)
tìm STN x để biểu thức :B =(2014+2015+2016):(x-2013) có GTLN và GTLN đó =bao nhiêu?
Tìm GTLN
M=-2015-(2x-x)^20
N= 2015/(x-1)^2 + |x-2y|+1
Mình giải ý M thôi nhé, vì ý N mình chưa suy nghĩ ra cách làm
\(M=-2015-\left(2x-x\right)^{20}\)
\(M=-2015-x^{20}\)
Ta có: -2015-x20\(\le\)-2015
Vậy M có giá trị lớn nhất bằng -2015 khi x20=0, hay x=0
tick đúng nha
a)Tìm GTNN: \(x^2+5y^2+2xy-4x-8y+2015\)
b)Tìm GTLN: \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
a)
P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015
= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010
= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)
a) Tìm GTNN: \(x^2+5y^2+2xy-4x-8y+2015\)
b) Tìm GTLN: \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
a) \(x^2+5y^2+2xy-4x-8y+2015\)
\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy.....
b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
3x+3 . 2 = 53+37 . 12015
GIÚP EM NHANH VỚI Ạ
\(3^{x+3}\cdot2=5^3+37\cdot1^{2015}\\\Rightarrow3^{x+3}\cdot2=125+37\\\Rightarrow3^{x+3}\cdot2=162\\\Rightarrow3^{x+3}=162:2\\\Rightarrow3^{x+3}=81\\\Rightarrow3^{x+3}=3^4\\\Rightarrow x+3=4\\\Rightarrow x=4-3\\\Rightarrow x=1\)
\(3^{x+3}.2=5^3+37.1^{2015}\\ 3^{x+3}.2=125+37.1=125+37=162\\ 3^{x+3}=\dfrac{162}{2}=81=3^4\\ Nên:x+3=4\\ Vậy:x=4-3=1\)
3\(x+3\).2 = 53 + 37.12015
3\(x\).27.2 = 125 + 37
3\(^x\).54 = 162
3\(^x\) = 162 : 54
3\(^x\) = 3
\(x\) = 1
Tìm GTLN của:
A=1/x^2+2
B=-|x+2015|+4
\(A=\dfrac{1}{x^2+2}\)
Ta có \(x^2+2\ge2\Leftrightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\)
Vậy \(A_{max}=\dfrac{1}{2}\Leftrightarrow x=0\)
\(B=-\left|x+2015\right|+4\le4\\ B_{max}=4\Leftrightarrow x+2015=0\Leftrightarrow x=-2015\)
Tìm GTLN: 51350/|x-30|+|x-4|
Tìm GTLN:2016-|x-2015|-|x-1975|-|x-1945|