Biểu diễn tập sau thành các khoảng
\(A={ x ∈ R | 2< |x|<3 }\)
Cho A={x€R/2x-2≥0} B={x€R/9-3x≥0} a) biểu diễn A,B thành khoảng,đoạn ,nửa khoảng b)Tìm A giao B ,A hợp B , A\B,B\A c) Liệt kê các tập hợp con của tập hợp
a: A=[1;+∞)
B=(-∞;3]
b: A giao B=[1;3]
A hợp B=R
A\B=(3;+∞)
B\A=(-∞;1)
Bài 1. Viết lại các tập sau về kí hiệu khoảng, đoạn, nửa khoảng. Biểu diễn chúng trên trục số:
A = { x ∈ R| x ≥ -3}
B = { x ∈ R | x < 8}
C = { x ∈ R | -1< x < 10}
D = { x ∈ R | -6 < x ≤ 8}
E = { x ∈ R | \(\dfrac{1}{2}\) ≤ x ≤ \(\dfrac{5}{2}\) }
F = { x ∈ R | x -1 < 0}
Bài 2. Viết các khoảng, đoạn sau về dạng kí hiệu tập hợp:
E=(1;+∞)
F=(-∞;6]
G=(-2;3]
H=[\(-\dfrac{3}{2}\) ;1]
Bài 1. Viết lại các tập sau về kí hiệu khoảng, đoạn, nửa khoảng. Biểu diễn chúng trên trục số:
A = { x ∈ R| x ≥ -3}
B = { x ∈ R | x < 8}
C = { x ∈ R | -1< x < 10}
D = { x ∈ R | -6 < x ≤ 8}
E = { x ∈ R | \(\dfrac{1}{2}\) ≤ x ≤ \(\dfrac{5}{2}\) }
F = { x ∈ R | x -1 < 0}
Bài 2. Viết các khoảng, đoạn sau về dạng kí hiệu tập hợp:
E=(1;+∞)
F=(-∞;6]
G=(-2;3]
H=[- \(\dfrac{3}{2}\) ;1]
Giúp với mình cần gấp
1.Cho A= {x€ R/|x| ≤ 4}; B={x€ R/ -5<x -1 ≤ 8}. Viết các tập hợp sau dưới dạng đoạn – khoảng- nữa khoảng R\(A ∪ B), A ∩ B, A\B, B\A
2.Cho A= {x€ R/x^2 ≤ 4}; B={x€ R/ -2<x -1< 3}. Viết các tập hợp sau dưới dạng đoạn – khoảng- nữa khoảng R\(A ∪ B), A ∩ B, A\B, B\A
3. Gọi N(A) là số phân tử của A. Cho N(A)=25, N(B)= 29,N(A∪B)=41. Tính N (A ∩ B),N (A\B),N (B\A)
1. Tập hợp số tự nhiên, kí hiệu N
N={0, 1, 2, 3, ..}.
2. Tập hợp số nguyên, kí hiệu là Z
Z={…, -3, -2, -1, 0, 1, 2, 3, …}.
Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.
Tập hợp các số nguyên dương kí hiệu là N*
3. Tập hợp số hữu tỉ, kí hiệu là Q
Q={ a/b; a, b∈Z, b≠0}
Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô hạn tuần hoàn.
4. Tập hợp số thực, kí hiệu là R
Một số được biểu diễn bằng một số thập phân vô hạn không tuần hoàn được gọi là một số vô tỉ. Tập hợp các số vô tỉ kí hiệu là I. Tập hợp số thực gồm các số hữ tỉ và các số vô tỉ.
R = Q ∪ I.
5. Một số tập hợp con của tập hợp số thực.
+ Đoạn [a, b] ={x ∈ R / a ≤ x ≤ b}
+ Khoảng (a; b) ={x ∈ R / a < x < b}
– Nửa khoảng [a, b) = {x ∈ R / a ≤ x < b}
– Nửa khoảng (a, b] ={x ∈ R / a < x ≤ b}
– Nửa khoảng [a; +∞) = {x ∈ R/ x ≥ a}
– Nửa khoảng (-∞; a] = {x ∈ R / x ≤a}
– Khoảng (a; +∞) = {x ∈ R / x >a}
– Khoảng (-∞; a) = {x ∈R/ x<a}.
Luyện trắc nghiệmTrao đổi bàiDùng kí hiệu để viết mỗi tập hợp sau và biểu diễn mỗi tập hợp đó trên trục số:
a) \(A = \{ x \in \mathbb{R}| - 2 < x < - 1\} \)
b) \(B = \{ x \in \mathbb{R}| - 3 \le x \le 0\} \)
c) \(C = \{ x \in \mathbb{R}|x \le 1\} \)
d) \(D = \{ x \in \mathbb{R}|x > - 2\} \)
Tham khảo:
a) Tập hợp A là khoảng (-2;1) và được biểu diễn là:
b) Tập hợp B là đoạn [-3; 0] và được biểu diễn là:
c) Tập hợp B là nửa khoảng \(( - \infty ;1]\) và được biểu diễn là:
d) Tập hợp B là nửa khoảng \((-2; - \infty )\) và được biểu diễn là:
Xét các số phức z=x+yi x , y ∈ R có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường tròn có phương trình (C): x - 1 2 + y - 2 2 = 4 . Tập hợp các điểm biểu diễn của số phức là w = z + z ¯ + 2 i
Cho tập hợp A=\(\left\{x\in R;\frac{1}{|x-1|}>2\right\}\).Xác định tập hợp R/A và biểu diễn trên trục số.
Lời giải:
\(\frac{1}{|x-1|}>2\Leftrightarrow \left\{\begin{matrix} |x-1|\neq 0\\ |x-1|< \frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{-1}{2}< x-1< \frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{1}{2}< x< \frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow A=(\frac{1}{2}; \frac{3}{2})\setminus \left\{1\right\}\)
\(\Rightarrow R\setminus A=(-\infty;\frac{1}{2}]\cup [\frac{3}{2};+\infty)\cup \left\{1\right\}\)
Hình:
Cho A={ xϵR | x ≤ 25}
B={xϵR| -4<x<5}
C={ xϵR| x≤ -4}
1) Viết các tập hợp trên dưới dạng đoạn , khoảng, nửa khoảng
2) Tìm A giao B , A hợp B , A\B, B\A, A giao C, A\C, CRA, CRB,CR(A\C) và biểu diễn trên trục số