Giải: a) \(4x^2-3x-7=0\)
b) \(5x^4+6x^2+1=0\)
c) \(\begin{cases}2x-3y=5\\3x+2y=1\end{cases}\)
Giải hệ phương trình:
a) \(\hept{\begin{cases}2x-y=7\\x-2y=5\end{cases}}\)
b) \(\hept{\begin{cases}2x+3y+2=0\\x-4y-10=0\end{cases}}\)
c) \(\hept{\begin{cases}3x-y=-2\\5x-2y=1\end{cases}}\)
d) \(\hept{\begin{cases}2x+3y=7\\x-2y=-7\end{cases}}\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=7\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=-3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\2x-8y=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11y=-22\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=10+4y=10-8=2\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=-4\\5x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3x+2=-15+2=-13\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=7\\2x-4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=21\\x=-7+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-1\end{matrix}\right.\)
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích?
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\) b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\) c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)
Hệ này cũng vô nghiệm
c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-2y=1\\2x-2y=1\end{cases}}\)
Hệ này có vô số nghiệm
Giải các hệ phương trình sau :
a, \(\begin{cases}x^2+4y^2=8\\x+2y=4\end{cases}\)
b, \(\begin{cases}x^2-xy=24\\2x-3y=1\end{cases}\)
c, \(\begin{cases}y+x^2=4x\\2x+y-5=0\end{cases}\)
d, \(\begin{cases}2x+3y=5\\3x^2-y^2+2y=4\end{cases}\)
e, \(\begin{cases}2x-y=5\\x^2+xy+y^2=7\end{cases}\)
1)\(\begin{cases}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{cases}\)
2)\(\begin{cases}x^2-4x+y^4+4y^2=2\\xy^2+2y^2+6x=23\end{cases}\)
3)\(\begin{cases}2x+\frac{1}{x+y}=3\\4x^2+4y^2+4xy+\frac{3}{\left(x+y\right)^2}=7\end{cases}\)
4)\(\begin{cases}y^6+x^9+3y^4+3y^2=8\\4y^2-3x^3y^2+x^3=2\end{cases}\)
5)\(\begin{cases}\sqrt{x+y}-2\sqrt{x-y}=1\\x+\sqrt{x^2+y^2}=8\end{cases}\)
6) \(\begin{cases}x+y-2=\frac{y}{x^2+1}\\x^2+y^2+xy=y-1\end{cases}\)
7) \(\begin{cases}4x-1=\sqrt{\left(2x+y\right).\left(2y+1\right)}\\\sqrt{x+2y+1}-\sqrt{x+y-1}=\sqrt{x-1}\end{cases}\)
8) \(\begin{cases}\left(x+y\right).\left(x+4y^2+y\right)+3y^4=0\\\sqrt{x+2y^2+1}-y^2+y+1=0\end{cases}\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
a)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)
b)\(\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)
c)\(\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}}\)
d)\(\hept{\begin{cases}2x+3y=-2\\3x-2y=-3\end{cases}}\)
e)\(\hept{\begin{cases}0.3x+05y=3\\1.5x-2y=1.5\end{cases}}\)
giải phương trình bằng phương pháp cộng nha m.n
\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)
Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)
Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)
\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)
Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)
Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)
\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)
\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)
\(\Rightarrow4x+3y-4x-2y=-2\)
\(\Rightarrow y=-2\)
Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)
Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Làm tương tự nha cậu
làm cả hai phương pháp cho nó máu :D
a, C1 : \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)
Lấy pt 1 cộng pt 2 có : \(3x+y+2x-y=3+7\)
\(< =>5x=10< =>x=2\)
Thay vào pt 2 có : \(2x-y=7\)
\(< =>4-y=7< =>y=-3\)
Vậy ...
C2: \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)
\(< =>\hept{\begin{cases}y=3-3x\\2x-\left(3-3x\right)=7\end{cases}}\)
\(< =>2x-3+3x=7\)
\(< =>5x=10< =>x=2\)
Thay vào pt 2 có : \(2x-y=7\)
\(< =>4-y=7< =>y=-3\)
Vậy ...
Giải các hệ phương trình sau:
1) \(\begin{cases} x + 2y = 5\\ x^2 + 2y^2 - 2xy = 5 \end{cases}\)
2) \(\begin{cases} 4x+4y-5=0\\ (x+1)^2+(y-3)^2=1 \end{cases}\)
3) \(\begin{cases} a^2+(b-2)^2=b^2\\ a^2+(b-1)^2=1 \end{cases}\)
4) \(\begin{cases} ab-5a-2b+8=0\\ a^2-4a=b^2-10b+24 \end{cases}\)
5) \(\begin{cases} xy+x-2=0\\ 2x^3-x^2y+x^2+y^2-2xy-y=0 \end{cases}\)
6) \(\begin{cases} x+y=1-2xy\\ x^2+y^2=1 \end{cases}\)
7) \(\begin{cases} x+y+{1\over x}+{1\over y}=5\\ x^2+y^2+{1\over x^2}+{1\over y^2}=9 \end{cases}\)
8) \(\begin{cases} x^2+y^2-x+y=2\\ xy+x-y=-1 \end{cases}\)
9) \(\begin{cases} x^3-3x^2+9x+22=y^3+3y^2-9y\\ x^2+y^2-x+y={1\over 2} \end{cases}\)
10) \(\begin{cases} x^2-4x=3y\\ y^2-4y=3x \end{cases}\)
Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau:
a,\(\hept{\begin{cases}2x-1\le0\\-3x+5\le0\end{cases}}\)
b,\(\hept{\begin{cases}3-y< 0\\2x-3y+1>0\end{cases}}\)
c,\(\hept{\begin{cases}x-2y< 0\\x+3y>-2\end{cases}}\)
d,\(\hept{\begin{cases}3x-2y-6\ge0\\2\left(x-1\right)+\frac{3y}{2}\le4\\x\ge0\end{cases}}\)
e,\(\hept{\begin{cases}x-y>0\\x-3y\le-3\\x+y>5\end{cases}}\)
f,\(\hept{\begin{cases}x-3y< 0\\x+2y>-3\\y+x< 2\end{cases}}\)
Giải phương trình: \(\begin{cases}2x^4+3x^3+45x=27y^2\\2y^2-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2}\end{cases}\)
Giải phương trình: \(\hept{\begin{cases}2x^4+3x^3+45x=27y^2\\2y^2-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2}\end{cases}}\)
\(_{\hept{2y^2}-x^2+1=\sqrt{3y^4-4x^2+6y^2-2x^2y^2\left(2\right)}}2x^4+3x^3+45x=27x^2\left(1\right)\)
ĐK: \(2y^2+1\ge1\)
Phương trình 2 tương đương:
\(\left(2y^2-x^2+1\right)^2=3y^4-4x^2+6x^2-2x^2y^2\)
\(\Leftrightarrow y^4+2x^2-2x^2y^2+x^{2+2}+1-2y^2=0\)
Các lập phương được cấu tạo từ \(x^2y^2\)nên :
\(\Leftrightarrow\left(y^4-2x^2y^2+y^4\right)-2\left(y^2-x^2\right)+1=0\)
Đảo chiều:
\(\Leftrightarrow\left(y^2-x^2-1\right)^2=0\)
\(\Leftrightarrow y^2=x^2+1\left(3\right)\)
Thế \(x^2+1=y^2\)vào phương trình (1) ta có :
\(2x^4+3x^3+45x=27\left(x^2+1\right)\)
\(\Leftrightarrow2x^4+3x^3-27x^2+45x-27=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)\left(2x^3+6x^2-18x+18\right)=0\)
Chuyển: \(x=\frac{3}{2}\Rightarrow y=\frac{\sqrt{13}}{2}\)
\(\Leftrightarrow[x=-\sqrt[3]{16-\sqrt[3]{4}}-1\Rightarrow y=\sqrt{\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)^2+1}\)