Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nam Phi
Xem chi tiết
lưdmwdwf
Xem chi tiết
lưdmwdwf
28 tháng 8 2021 lúc 9:53

x + y + z = 0

⇒x3+y3+z3=3xyz⇒x3+y3+z3=3xyz

⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)

⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)

⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)

⇒2(x5+y5+z5)=5xyz(x2+y2+z2)

Nguyễn Hoàng Tú Anh
Xem chi tiết
Vũ Trần Giang
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2023 lúc 21:54

Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)

\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)

\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)

\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)

\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)

\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)

\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)

\(\ge6\left(x+y+z+3\right)^2\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Nguyễn Hữu Minh Khang
Xem chi tiết
Trên con đường thành côn...
20 tháng 8 2021 lúc 22:21

undefined

An Phương Hà
Xem chi tiết
zZz Cool Kid_new zZz
2 tháng 9 2019 lúc 20:30

Ta có:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=15xyz\left(x^2+y^2+z^2\right)\)

Mặt khác:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=-z^5\)

\(\Rightarrow x^5+y^5+z^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=0\)

\(\Rightarrow x^5+y^5+z^5+\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=0\)

\(\Rightarrow x^5+y^5+z^5+\left(x+y\right)\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow x^5+y^5+z^5-5xyz\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)-5xyz\left[\left(x^2+2xy+y^2\right)+x^2+y^2\right]=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Khi đó:\(6\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)=VT\)

\(\Rightarrowđpcm\)

An Phương Hà
2 tháng 9 2019 lúc 21:44

zZz Cool Kid zZz mình chưa hiểu lắm

Bn giải rõ ra dc ko

Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

nguyễn văn kiệt
Xem chi tiết
TOAN 2000
Xem chi tiết
Lê Quỳnh Trang
Xem chi tiết