Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)
\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)
\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)
\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)
\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)
\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)
\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)
\(\ge6\left(x+y+z+3\right)^2\)
Dấu "=" xảy ra khi \(x=y=z=1\)