Phân tích thành nhân tử :
a, \(x^5+x+1\)
b, \(x^8+x^7+1\)
Phân tích đa thức thành nhân tử
a)x^5-x^4-1
b)x^8+x^7+1
a) \(x^5-x^4-1\)
\(=\left(x^5+x^2\right)-\left(x^4+x\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x^3+1\right)-x\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
b) \(x^8+x^7+1\)
\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a) \(x^5-x^4-1=x^5+x^2-x^4-x^2-1\)
\(=x^2\left(x^3+1\right)-\left(x^4+x^2+1\right)=x^2\left(x+1\right)\left(x^2-x+1\right)-\left[\left(x^2\right)^2+2x^2+1-x^2\right]\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left[\left(x^2+1\right)-x^2\right]\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2-x+1\right)\left[x^2\left(x+1\right)-\left(x^2+x+1\right)\right]\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
b) \(x^8+x^7+1=x^8+x^7+x^6-x^6+1\)
\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)=x^6\left(x^2+x+1\right)-\left[\left(x^3\right)^2-1\right]\)
\(=x^6\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
Mong cô Chuy cho e thêm 1 Gp nựa nha cô '-'
phân tích đa thức thành nhân tử
a) x^7 + x^5 +1
b) x^8 + x^7 +1
c) x^8 + x^7 + 1
các bạn làm ơn giúp mik với!!!
a) x12 + 4 = x12 + 4x6 + 4 - 4x6 = (x6 + 2)2 - (2x3)2
= (x6 - 2x3 + 2)(x6 + 2x3 + 2)
b) 4x8 + 1 = 4x8 + 4x4 + 1 - 4x4 = (2x4 + 1)2 - (2x2)2
= (2x4 + 2x2 + 1)(2x4 - 2x2 + 1)
c) x7 + x5 - 1 = x7 - x + x5 + x2 - (x2 - x + 1) = x(x6 - 1) + x2(x3 + 1) - (x2 - x + 1)
= x(x3 - 1)(x3 + 1) + x2(x + 1)(x2 - x + 1) - (x2 - x + 1)
= (x4 - x)(x + 1)(x2 - x + 1) + (x3 + x2)(x2 - x + 1) - (x2 - x + 1)
= (x5 + x4 - x2 - x + x3 + x2 - 1)(x2 -x + 1)
= (x5 + x4 + x3 - x - 1)(x2 - x + 1)
d) x7 + x5 + 1 = x7 - x + x5 - x2 + (x2 + x + 1)
= x(x3 - 1)((x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)((x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x5 - x4 + x2 - x + x3 - x2 + 1)
= (x2 + x + 1)(x5 - x4 + x3 - x + 1)
a,x^8+x+1
b,x^8+x^7+1
Phân tích đã thức thành nhân tử
a,x8+x+1
=x8+x2+x+1-x2
=x2(x6-1)+(x2+x+1)
=x2(x3-1)(x3+1)+(x2+x+1)
=x2(x-1)(x2+x+1)(x3+1)+(x2+x+1)
=(x2+x+1)[x2(x-1)(x3+1)+1]
=(x2+x+1)(x6+x3-x^5-x2+1)
b,x8+x7+1
=x8+x7+x2+x+1-x2-x
=x2(x6-1)+x(x6-1)+(x2+x+1)
=x2(x-1)(x2+x+1)(x3+1)+x(x-1)(x2+x+1)(x3+1)+(x2+x+1)
=(x2+x+1)[x2(x-1)(x3+1)+x(x-1)(x3+1)+1)]
=(x2+x+1)(x6-x4+x3-x+1)
Phân tích đa thức thành nhân tử :
a) C = ( x^2 - 2x + 3 )( x^2 - 2x + 5 ) - 8
b) D = x^8 + x^7 + 1
ủa phần a mình phân tích rồi mà bạn hu hu
phân tích đa thức thành nhân tử
a) x^7 + x^2 + 1
b) x^8 + x + 1
a) x^7+x^2 +1 =x^7 - x^4+x^4 +x^2+1
= (x^7 - x^4) +[ (x^2)^2 +x^2 +1]
= x^4(x^3 -1)+(x^2 - 1)
= x^4 ( x-1)(x^2 +x +1)+ (x-1)(x+1)
= (x-1)[ x^4( x^2+x+1)+(x+1)]
= (x-1)(x^6 +x^5+x^4+x+1)
b) x^8 +x+1 = x^8 -x^2+x^2 +x+1
= (x^8-x^2) +(x^2 +x+1)
=x^2(x^6 -1) +(x^2+x+1)
=x^2[ (x^3)^2 -1)+(x^2+x+1)
= x^2 (x^3-1)(x^3+1) +(x^2 +x+1)
= x^2(x-1)(x^2+x+1)(x^3+1) +(x^2 +x+1)
= (x^2+x+1)[ x^2(x-1)(x^3+1) +1]
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
Phân tích đa thức thành nhân tử:
a. x^16+x^8+1
b.x^10+x^5+1
c. x^9+x^8+x^7-x^3+1
\(x^{16}+x^8+1\)
\(=x^{16}+2x^8+1-x^8\)
\(=\left(x^8+1\right)^2-x^8\)
\(=\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\)
\(=\left(x^8-x^4+1\right)\left(x^8+2x^4+1-x^4\right)\)
\(=\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\)
\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Phân tích đa thức thành nhân tử :
a) ( b - a )^2 + ( a - b )( 3a - 2b ) - a^2 + b^2
b) ( x^2 - 2x + 3 )( x^2 - 2x + 5 ) - 8
c) x^8 + x^7 + 1
a,(b-a)^2+(a-b)*(3a-2b)-a^2+b^2
=(a-b)^2+(a-b)*(3a-2b)-(a^2-b^2)
=(a-b)^2+(3a-2b)-(a-b)*(a+b)
=(a-b)*(a-b+3a-2b-a-b)
=(a-b)*(3a-4b)
b, Đặt x^2-2x+4=a=>x^2-2x+3=a-1
x^2-2x+5=a+1
=>phương trình ban đàu sẽ thành:
(a+1)*(a-1)=8
<=>a^2-1=8
<=>a^2=9
<=>a=3 hoặc a=-3
quay về biến cũ ta có
TH1a=3=>x^2-2x+4=3
<=>x^2-2x+1=0
<=>(x-1)^2=0
<=>x-1=0
<=>x=1
TH2 a=-3=>x^2-2x+4=-3
=>(x^2-2x+1)+6=0
<=>(x-1)^2+6=0
do (x-1)^2>=0 với mọi x=>(x-1)^2+6>0 với mọi x
=> phương trình vô nghiệm
Vậy phương trình có 1 nghiệm là x=1