a,(b-a)^2+(a-b)*(3a-2b)-a^2+b^2
=(a-b)^2+(a-b)*(3a-2b)-(a^2-b^2)
=(a-b)^2+(3a-2b)-(a-b)*(a+b)
=(a-b)*(a-b+3a-2b-a-b)
=(a-b)*(3a-4b)
b, Đặt x^2-2x+4=a=>x^2-2x+3=a-1
x^2-2x+5=a+1
=>phương trình ban đàu sẽ thành:
(a+1)*(a-1)=8
<=>a^2-1=8
<=>a^2=9
<=>a=3 hoặc a=-3
quay về biến cũ ta có
TH1a=3=>x^2-2x+4=3
<=>x^2-2x+1=0
<=>(x-1)^2=0
<=>x-1=0
<=>x=1
TH2 a=-3=>x^2-2x+4=-3
=>(x^2-2x+1)+6=0
<=>(x-1)^2+6=0
do (x-1)^2>=0 với mọi x=>(x-1)^2+6>0 với mọi x
=> phương trình vô nghiệm
Vậy phương trình có 1 nghiệm là x=1