Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 23:31

\(=\dfrac{4x\left(x+1\right)+1}{4x^2}\cdot\left(\dfrac{-\left(2x-1\right)}{2x+1}+\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x+1}\right)-\dfrac{1}{2x}\)

\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\left(\dfrac{-\left(2x-1\right)}{2x+1}+\dfrac{2x-1}{\left(2x+1\right)^2}\right)-\dfrac{1}{2x}\)

\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\dfrac{-\left(2x-1\right)\left(2x+1\right)+2x-1}{\left(2x+1\right)^2}-\dfrac{1}{2x}\)

\(=\dfrac{-4x^2+1+2x-1}{4x^2}-\dfrac{1}{2x}\)

\(=\dfrac{-4x^2+2x}{4x^2}-\dfrac{1}{2x}\)

\(=\dfrac{-2x\left(2x-1\right)}{2x\cdot2x}-\dfrac{1}{2x}\)

\(=\dfrac{-2x+1-1}{2x}=\dfrac{-2x}{2x}=-1\)

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2022 lúc 20:54

\(A=\left(\dfrac{x^2-2x+1}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)

Duong Thi Nhuong
Xem chi tiết
Cao Hoàng Minh Nguyệt
6 tháng 7 2016 lúc 12:51

Đây mà là toán lp 7 à???

dang thai nhu
Xem chi tiết
Thu
18 tháng 1 2016 lúc 16:59

cái câu rút gọn phân thức, bạn xem lại đề thử nhé.

 

dang thai nhu
18 tháng 1 2016 lúc 18:45

vậy bạn tính giúp bài phía dưới nha bạn 

 

Thu
19 tháng 1 2016 lúc 6:57

\(\left[\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right].\frac{5\left(2x-1\right)}{4x}\)

=\(\left[\frac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\right].\frac{5\left(2x-1\right)}{4x}\)

=\(\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5\left(2x-1\right)}{4x}\)

=\(\frac{10}{2x+1}\)

Duong Thi Nhuong TH Hoa...
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Đặng Minh Triều
18 tháng 6 2016 lúc 9:48

\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right):\frac{4}{4x^2-4}\)

\(=\left(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+2\right)}+\frac{6}{2.\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\frac{4}{4\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}.\left(x-1\right)\left(x+1\right)=\frac{4}{2}=2\)

Đặng Minh Triều
18 tháng 6 2016 lúc 9:48

thêm ĐK: x khác 1 ; -1

Nguyễn Thị Anh
18 tháng 6 2016 lúc 9:50

tập xđ: x khác (-1,1)

A=(\(\frac{-x^2-2x-6-x^2-2x+3}{2\left(1-x^2\right)}\):\(\frac{5}{4\left(1-x^2\right)}\)

A=\(\frac{-4x^2-8x-6}{5}\)

Hoa Nguyen
Xem chi tiết
Trịnh Thành Công
25 tháng 4 2017 lúc 21:21

a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

   \(84x+63-90x+30=175x+140+315\)

    93-6x=175x+455

     -362=181x

       x=-2

Trịnh Thành Công
25 tháng 4 2017 lúc 21:23

b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

   \(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)

      \(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

        \(\left(3x+1\right)\left(-x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

Duong Thi Nhuong TH Hoa...
Xem chi tiết
Nguyễn Quang Trung
27 tháng 5 2016 lúc 20:06

\(A=\left(\frac{1+2x}{2.\left(2+x\right)}-\frac{x}{3.\left(x-2\right)}+\frac{2x^2}{3.\left(4-x^2\right)}\right).\frac{24-12x}{6+13x}\)

        \(=\left[\frac{3.\left(1+2x\right)\left(2-x\right)-2x\left(x+2\right)+4x^2}{2.3.\left(x+2\right)\left(2-x\right)}\right].\frac{24-12x}{6+13x}\)

          \(=\frac{6+9x-6x^2-2x^2-4x+4x^2}{6.\left(4-x^2\right)}.\frac{24-12x}{6+13x}\)

             \(=\frac{6+5x-4x^2}{6.\left(4-x^2\right)}.\frac{12.\left(2-x\right)}{6+13x}\) \(=\frac{\left(6+5x-4x^2\right).2}{\left(x+2\right)\left(6+13x\right)}=\frac{12+10x-8x^2}{13x^2+32x+12}\)

Duong Thi Nhuong
Xem chi tiết
phan thị minh anh
2 tháng 7 2016 lúc 9:10

\(\left[\frac{x}{\left(x+4\right)\left(x-4\right)}-\frac{x-4}{x\left(x+4\right)}\right]:\frac{2\left(x-2\right)}{x\left(x+4\right)}\)\(=\left[\frac{x^2-\left(x-4\right)^2}{x\left(x+4\right)\left(x-4\right)}\right].\left[\frac{x\left(x+4\right)}{2\left(x-2\right)}\right]\)\(=\left(\frac{x^2-x^2+8x-16}{x\left(x+4\right)\left(X-4\right)}\right).\frac{x\left(x+4\right)}{2\left(x-2\right)}=\frac{8\left(x-2\right).x\left(x+4\right)}{x\left(x+4\right)\left(x-4\right).2\left(x-2\right)}=\frac{4}{x-4}\)