Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐINH THÙY LINH
Xem chi tiết
Nguyen hoan
Xem chi tiết
ngô thái dương
24 tháng 10 2023 lúc 16:50

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

mọt math
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
bou99
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:42

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:45

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)

Trần Việt Khoa
Xem chi tiết
Trần Minh Hoàng
9 tháng 1 2021 lúc 22:04

Rõ ràng trong hai số a, b, c tồn tại một số chẵn (Vì nếu a, b, c đều lẻ thì a3 + b3 + c3 là số lẻ, không chia hết cho 14).

Ta lại có \(a^3;b^3;c^3\equiv0;1;-1\).

Do đó nếu a, b, c đều không chia hết cho 7 thì \(a^3;b^3;c^3\equiv1;-1\left(mod7\right)\Rightarrow a^3+b^3+c^3⋮̸7\).

Trần Minh Hoàng
9 tháng 1 2021 lúc 22:05

Làm tiếp: Suy ra trong ba số a, b, c có ít nhất một số chia hết cho 7 \(\Rightarrow abc⋮7\).

Vậy abc chia hết cho 14.

Bùi Hương
Xem chi tiết
Hoa Thị Thùy Linh
17 tháng 4 2015 lúc 22:20

Đặt S= | a1 + a2 | + |a2 + a3| +  |a3 + a4| + .... + | a(n) + a1 | 

Ta có: S - 2.(a1+a2+...+a(n))= [| a1 + a2 | -(a1+a2)]+ [|a2 + a3| -(a2+a3)]+ [ |a3 + a4|-(a3+a4)] + .... +[ | a(n) + a1 | -(a(n)+a1)]

Mặt khác ta dễ dàng CM được: |A| - A  luôn là một số chẵn nên|a(i)+a(j)|-[a(i)+a(j)] là một số chẵn.

 nên  S - 2.(a1+a2+...+a(n)) là một số chẵn mà 2.(a1+a2+...+a(n)) là một số chẵn =>S là một số chẵn.

So sánh ta thấy S là một số chẵn mà 2015 là một số lẻ.

Vậy không có các số nguyên a(i) thỏa mãn:  | a1 + a2 | + |a2 + a3| +  |a3 + a4| + .... + | a(n) + a1 | = 2015

 

Nguyễn Thành Đạt
3 tháng 1 2017 lúc 21:53

làm tính trừ có giống như vầy ko ?

Ngọc Tân FC
Xem chi tiết
Dũng Senpai
1 tháng 1 2017 lúc 14:52

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^

Dũng Senpai
1 tháng 1 2017 lúc 14:51

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^

Dũng Senpai
1 tháng 1 2017 lúc 14:52

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^

nguyễn thị nam
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 8 2021 lúc 22:09

\(a^2+b^2=a^3+b^3=a^4+b^4\)

\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)

\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)

\(\Rightarrow2ab=a^2+b^2\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a=b\)

Thế vào \(a^2+b^2=a^3+b^3\)

\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)

\(\Rightarrow a+b=2\)

Ngọc Tân FC
Xem chi tiết