Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thái Anh
Xem chi tiết
Vo Tuan Viet
30 tháng 8 2016 lúc 20:15

Bằng nhau

Đỗ Phúc Thiên
30 tháng 8 2016 lúc 21:59

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

liên hoàng
30 tháng 8 2016 lúc 23:12

ta áp dụng (a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) >=9 

dễ chứng minh bdt phụ này 

rùi từ đây suy ra 3(a-b)(b-c)(c-a) = 0 => a=b=c (1)

mà lên bđt phụ trên thì xảy ra khi a=b=c (1)

từ (1) , (2) , ta suy ra a=b=c hay đpcm 

vì k chặt chẽ lắm nên thông cảm

Trần Hoàng Thiên Bảo
Xem chi tiết
thanh niên nghiêm túc
11 tháng 9 2016 lúc 20:50
Xét tam giác ABC có: AB = c, BC = a, AC = b.Từ A dựng đường thẳng d // BC. Lấy B' đối xứng với B qua d.Ta nhận thấy: BB' = 2.h . Ta có: B B ′ 2 + B C 2 = B ′ C 2 BB′2+BC2=B′C2 \leq ( B ′ A + A C ) 2 (B′A+AC)2 . Suy ra: 4. h a 2 4.ha2 \leq ( c + b ) 2 − a 2 (c+b)2−a2 (1) Hoàn toàn tương tự: 4. h b 2 4.hb2 \leq ( c + a ) 2 − b 2 (c+a)2−b2 (2) 4. h c 2 4.hc2 \leq ( a + b ) 2 − c 2 (a+b)2−c2 (3) Từ (1)(2)(3) ta có: ( c + b ) 2 − a 2 + ( c + a ) 2 − b 2 + ( a + b ) 2 − c 2 (c+b)2−a2+(c+a)2−b2+(a+b)2−c2 \geq 4. ( h a 2 + h b 2 + h c 2 ) 4.(ha2+hb2+hc2) \Rightarrow ( a + b + c ) 2 (a+b+c)2 \geq 4. ( h a 2 + h b 2 + h c 2 ) 4.(ha2+hb2+hc2) (dpcm)
Nguyễn Ngọc Linh
Xem chi tiết
win 10 ok
1 tháng 2 2017 lúc 20:55

a on à :D 

nguyen hoang
Xem chi tiết
Nguyễn Thiều Công Thành
17 tháng 9 2017 lúc 22:38

\(\frac{1}{m-2a}+\frac{1}{m-2b}+\frac{1}{m-2c}=\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\)

áp dụng bđt cô si ta có:

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{4}{c+a-b+a+b-c}=\frac{4}{2a}=\frac{2}{a}\)

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\Rightarrow2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow\frac{1}{m-2a}+\frac{1}{m-2b}+\frac{1}{m-2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(Q.E.D\right)\)

dấu = xảy ra khi a=b=c

Phan Hải Đăng
Xem chi tiết
IS
28 tháng 3 2020 lúc 9:26

do AD//CM nên \(\frac{AD}{CM}=\frac{BA}{BM}=\frac{c}{b+c}\)

mà \(CM< AM+AC=2b=>\frac{c}{bc}>\frac{AD}{2b}=>\frac{1}{l_a}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)

tương tự ta có 

\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\left(2\right)\\\frac{1}{l_c}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(3\right)\end{cases}}\)

cộng (1) (2) (3) zế zới zế ta được đpcm

Khách vãng lai đã xóa
Ngocmai
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
Tran Le Khanh Linh
5 tháng 10 2020 lúc 20:09

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Với x=y=z thì a=b=c => tam giác ABC đều

Khách vãng lai đã xóa
KCLH Kedokatoji
26 tháng 10 2020 lúc 21:52

Cách khác :

Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)

Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy tam giác ABC đều.

Khách vãng lai đã xóa
Minh Nguyen
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 3 2020 lúc 16:02

Sai chỗ nào tự sửa nha :)))

Khách vãng lai đã xóa
Inequalities
25 tháng 3 2020 lúc 18:02

Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với

Khách vãng lai đã xóa
Inequalities
26 tháng 3 2020 lúc 19:47

file:///C:/Users/THAOCAT/Pictures/%C4%90%E1%BA%A1i%20S%E1%BB%91%20-%20H%C3%ACnh%20H%E1%BB%8Dc%20L%E1%BB%9Bp%208,9/%C4%90%E1%BB%81%20thi%20hsg%20to%C3%A1n%208/De%20thi%20chon%20HSG.pdf

Khách vãng lai đã xóa
Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Huy Thắng
14 tháng 3 2019 lúc 18:05

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

Nguyễn Minh Phúc
27 tháng 10 lúc 21:49

:)