6x^2-(2x+5) (3x-2)
Các bn giải jup
a,\(\frac{1}{2x-2}-\frac{x-1}{3x^2+6x+3}\)
b,\(\frac{4}{x^2-1}+\frac{1}{x+1}+\frac{-2}{x-1}\)
c,\(\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
ai jup em vs
Đề bài yêu cầu gì bạn?
Giải các phương trình sau:
a \(x^4=5x^2+2x-3\)
b \(x^4=6x^2+12x+10\)
c \(3x^3+3x^2+3x=-1\)
d \(8x^3-12x^2+6x-5=0\)
Bài 3: Giải các phương trình sau:
a, 2x3 - 50x = 0
b, 2x (3x - 5) - (5 - 3x)
c, 9(3x - 2) = x(2 - 3x)
d, (2x - 1)2 - 25 = 0
e, 25x2 - 2 = 0
f, x2 - 25 = 6x - 9
g, 5x(x - 3) - 2x + 6 = 0
h, 3x(x - 7) - 2(x - 7) = 0
i, 7x2 - 28 = 0
j, (2x + 1) + x(2x + 1) = 0
k, (x + 2)2 - (x - 2)(x + 2) = 0
l, x3 + 5x2 - 4x - 20 = 0
m, x2 - 25 + 2(x + 5) = 0
n, x3 - 3x + 2 = 0
o, x2 - 6x + 8 = 0
p, x2 - 5x - 14 = 0
q, (x - 2)2 - (x - 3)(x + 3) = 6
r, (2x - 1)2 - (2x + 5)(2x - 5) = 18
Giải phương trình: \(\sqrt{2x^4-4x^2+11}+\sqrt{3x^2-6x+28}=-3x^2+6x+5\)
\(\Leftrightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}=-3\left(x-1\right)^2+8\)
Ta có:
\(\left\{{}\begin{matrix}\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge\sqrt{9}+\sqrt{25}=8\\-3\left(x-1\right)^2+8\le8\end{matrix}\right.\)
\(\Rightarrow\sqrt{2\left(x^2-1\right)^2+9}+\sqrt{3\left(x-1\right)^2+25}\ge-3\left(x-1\right)^2+8\)
Đẳng thức xảy ra khi và chỉ khi \(x=1\)
Giải các phương trình sau :
a) 5-3x=6x+7
b) 3x-2/6 -5 = 3-2(x+7)/4
c) (x-1)(5x+3)=(3x-8)(x-1)
d) (2x-1)2 -(x+3)2 =0
a: 5-3x=6x+7
=>-3x-6x=7-5
=>-9x=2
=>\(x=-\dfrac{2}{9}\)
b: \(\dfrac{3x-2}{6}-5=3-\dfrac{2\left(x+7\right)}{4}\)
=>\(\dfrac{3x-2}{6}+\dfrac{x+7}{2}=8\)
=>\(\dfrac{3x-2+3\left(x+7\right)}{6}=8\)
=>3x-2+3x+14=48
=>6x+12=48
=>6x=36
=>\(x=\dfrac{36}{6}=6\)
c: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
=>\(\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
=>(x-1)(5x+3-3x+8)=0
=>(x-1)(2x+11)=0
=>\(\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
d: \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
=>\(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
GIẢI CÁC PHƯƠNG TRÌNH SAU:
2x3+6x2+6x+1=0
X^3-3X^2+3X-3=0
2X^3+6X^2+6X+1=0
3X^3+18X^2+36X+23=0
giải các phương trình sau:
a) x(x-1)-(x^2-3x+5)
b) (x-5)^2+6x-30=0
c) x/x-2-1/x=2/x^2-2x
b: =>(x-5)2+6(x-5)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
c: \(\Leftrightarrow x^2-x+2=2\)
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
Giải các phương trình sau:
a) 4 − 5 x = 5 − 6 x ; b) 3 x + 2 − 7 x + 1 = 0 ;
c) x 2 − 2 x − 3 + x + 1 = 0 ; d) 1 4 x − 5 = 3 x + 1
a) Trường hợp 1. Xét 4 - 5x = 5 - 6x.
Tìm được x = 1.