\(\int\frac{1}{sin^4x.cosx}dx\)
\(\int\left(\frac{1}{1+sinx}\right)dx\)
\(\int\left(sin^4x\right)dx\)
\(\int\left(sin^6x+cos^6x\right)dx\)
Lời giải:
Câu 1:
\(A=\int\frac{dx}{1+\sin x}=\int \frac{(1-\sin x)dx}{1-\sin^2 x}=\int\frac{(1-\sin x)dx}{\cos ^2x}=\int\frac{dx}{\cos ^2x}-\int\frac{\sin x dx}{\cos^2 x}\)
\(\Leftrightarrow A=\int d(\tan x)+\int\frac{d(\cos x)}{\cos^2 x}=\tan x-\frac{1}{\cos x}+c\)
Câu 2:
\(B=\int \sin ^4 xdx=\int \sin^2 x(1-\cos ^2x)dx=\int \sin^2 xdx-\int \sin^2 x\cos^2xdx\)
Ta thấy \(\int \sin^2xdx=\frac{1}{2}\int (1-\cos 2x)dx=\frac{x}{2}-\frac{\sin 2x}{4}+c\)
Và \(\int \sin ^2x\cos^2xdx=\frac{1}{4}\int \sin^22xdx=\frac{1}{8}\int (1-\cos4x)dx=\frac{x}{8}-\frac{\sin 4x}{32}+c\)
\(\Rightarrow B=\frac{3}{8}-\frac{\sin 2x}{4}+\frac{\sin 4x}{32}+c\)
Câu 3:
\(C=\int (\sin ^6 x+\cos^6 x)dx=\int (\sin^2x+\cos^2x)[\sin^4x-\sin^2x\cos^2x+\cos^4x)dx\)
\(\Leftrightarrow C=\int [(\sin^2x+\cos^2x)^2-3\sin^2x\cos^2x]dx\)
\(\Leftrightarrow C=\int dx-\frac{3}{4}\int\sin^22xdx=\int dx-\frac{3}{8}\int (1-\cos 4x)dx\)
\(\Leftrightarrow C=x-\frac{3x}{8}+\frac{3\sin 4x}{32}+c=\frac{5x}{8}+\frac{3\sin 4x}{32}+c\)
1) \(\int\frac{xdx}{1+\sqrt{x-1}}\)
2) \(\int\frac{sin2xdx}{\cos^3x-\sin^2x-1}\)
3) \(\int\frac{dx}{1+\sqrt{x}+\sqrt{1+x}}\)
4) \(\int\frac{dx}{3x^3+x^2-4x}\)
5) \(\int\frac{dx}{\sqrt{9-x^2}}\)
1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)
\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)
Thay x vào ta có...
2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)
\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)
Ta có:
\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)
\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)
Thay x vào, ta có....
3)
\(\frac{1}{\left(1+\sqrt{x}\right)+\sqrt{x+1}}=\frac{\left(1+\sqrt{x}\right)-\sqrt{x+1}}{\left[\left(1+\sqrt{x}\right)-\sqrt{x+1}\right]\cdot\left[\left(1+\sqrt{x}\right)+\sqrt{x+1}\right]}\\ =\frac{\left(1+\sqrt{x}\right)-\sqrt{x+1}}{2\sqrt{x}}=\frac{1}{2\sqrt{x}}+\frac{1}{2}+\frac{\sqrt{x+1}}{2\sqrt{x}}\)
\(I_3=\int\left(\frac{1}{2\sqrt{x}}+\frac{1}{2}+\frac{\sqrt{x+1}}{2\sqrt{x}}\right)dx=\sqrt{x}+\frac{x}{2}+\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}\)
Xét \(\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}\)
Đặt \(x=tan^2t\Leftrightarrow dx=\frac{2tant}{cos^2t}\cdot dt\)
\(\Rightarrow\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}=\int\sqrt{\frac{tan^2t+1}{tan^2t}}\cdot\frac{tant}{cos^2t}dt\\ =\int\frac{1}{sin^2t}\cdot\frac{sint}{cos^3t}dt=\int\frac{d\left(cost\right)}{cos^3t\left(1-cos^2t\right)}=...\)
a) \(\int sin^2\frac{x}{2}dx\)
b) \(\int cos^2\frac{x}{2}dx\)
c) \(\int\frac{2x+1}{x^2+x+5}dx\)
d) \(\int\left(2tanx+cotx\right)^2dx\)
a)\(\int \sin ^2\left (\frac{x}{2}\right)dx=\int \frac{1-\cos x }{2}dx=\frac{x}{2}-\frac{\sin x}{2}+c\)
b)\(\int \cos ^2 \left (\frac{x}{2}\right)dx=\int \frac{1+\cos x}{2}dx=\frac{x}{2}+\frac{\sin x}{2}+c\)
c) \(\int \frac{(2x+1)dx}{x^2+x+5}=\int \frac{d(x^2+x+5)}{x^2+x+5}=ln(x^2+x+5)+c\)
d)\(\int (2\tan x+ \cot x)^2dx=4\int \tan ^2 x+\int \cot^2 x+4\int dx=4\int \frac{1-\cos^2 x}{\cos^2 x}dx+\int \frac{1-\sin^2 x}{\sin^2 x}dx+4\int dx \)\( =4\int d(\tan x)-\int d(\cot x)-\int dx=4\tan x-\cot x-x+c\)
\(\int\limits^{\frac{\pi}{3}}_0\frac{sinx}{cosx\sqrt{3+sin^2x}}dx\)
\(\int\limits^{ln8}_0\frac{e^x}{1+\sqrt{3e^x+1}}dx\)
1)\(\int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx\)
2)\(\int\frac{dx}{\left(e^x+1\right)\left(x^2+1\right)}\)
3)\(\int\frac{1+2x\sqrt{1-x^2}+2x^2}{1+x+\sqrt{1+x^2}}\)dx
4)\(\int\frac{sin^6x+c\text{os}^6x}{1+6^x}dx\)
5)\(\int_0^{\frac{\pi}{2}}\frac{\sqrt{c\text{os}x}}{\sqrt{s\text{inx}}+\sqrt{c\text{os}x}}dx\)
6)\(\int\frac{x^4}{2^x+1}dx\)
7)\(\int_0^{\frac{\pi^2}{4}}sin\sqrt{x}dx\)
8)\(\int\sqrt[6]{1-c\text{os}^3x}.s\text{inx}.c\text{os}^5xdx\)
9)\(\int\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}.e^x}}dx\)
10)\(\int\frac{c\text{os}x+s\text{inx}}{\left(e^xs\text{inx}+1\right)s\text{inx}}dx\)
Tìm các nguyên hàm sau:
a) \(\int (3x^2-2x-4)dx \)
b) \(\int(\sin3x-\cos4x)dx \)
c) \(\int(e^{-3x}-4^x)dx \)
d) \(\int\ln(x)dx \)
e) \(\int(x.e^x)dx \)
f) \(\int(x+1).\sin(x)dx \)
g) \(\int x.\ln(x)dx \)
\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)
\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)
\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)
d. \(I=\int lnxdx\)
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)
\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)
e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)
f.
Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)
g.
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)
Bằng cách biến đổi các hàm số lượng giác, hãy tính :
a) \(\int\sin^4xdx\)
b) \(\int\dfrac{1}{\sin^3x}dx\)
c) \(\int\sin^3x\cos^4xdx\)
d) \(\int\sin^4x\cos^4xdx\)
e) \(\int\dfrac{1}{\cos x\sin^2x}dx\)
g) \(\int\dfrac{1+\sin x}{1+\cos x}dx\)
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
\(\int\limits^{\frac{\Pi}{3}}_{\frac{\Pi}{4}}\frac{1}{sin^2xcos^2x}dx\)
\(\int\limits^{ }_{ }\frac{cos^2x+sin^2x}{sin^2xcos^2x}dx=\int\limits\frac{1}{sin^2x}dx+\int\limits^{ }_{ }\frac{1}{cos^2x}dx=tanx+cotgx\)
thay cân vào ta tính đc
Tìm nguyên hàm \(F=\int \frac{\sin 2x}{1+\sin ^2x}dx\)
Lời giải:
Để ý rằng \(\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x\)
\(\Rightarrow \sin ^2x=\frac{1-\cos 2x}{2}\Rightarrow \sin ^2x+1=\frac{3-\cos 2x}{2}\)
Do đó:
\(F=\int \frac{2\sin 2xdx}{3-\cos 2x}=\int \frac{\sin 2xd(2x)}{3-\cos 2x}\)
Đặt \(2x=t\Rightarrow F=\int \frac{\sin tdt}{3-\cos t}=\int \frac{d(-\cos t)}{3-\cos t}\)
\(=\int \frac{d(3-\cos t)}{3-\cos t}=\ln |3-\cos t|+c=\ln |3-\cos 2x|+c\)
P/s: Lần sau bạn chú ý viết công thức rõ ràng nhé. Bấm vào biểu tượng \(\sum \) và viết thôi.