Lời giải:
Để ý rằng \(\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x\)
\(\Rightarrow \sin ^2x=\frac{1-\cos 2x}{2}\Rightarrow \sin ^2x+1=\frac{3-\cos 2x}{2}\)
Do đó:
\(F=\int \frac{2\sin 2xdx}{3-\cos 2x}=\int \frac{\sin 2xd(2x)}{3-\cos 2x}\)
Đặt \(2x=t\Rightarrow F=\int \frac{\sin tdt}{3-\cos t}=\int \frac{d(-\cos t)}{3-\cos t}\)
\(=\int \frac{d(3-\cos t)}{3-\cos t}=\ln |3-\cos t|+c=\ln |3-\cos 2x|+c\)
P/s: Lần sau bạn chú ý viết công thức rõ ràng nhé. Bấm vào biểu tượng \(\sum \) và viết thôi.