tính tổng:
M=3+32+33+...+3n
N=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
Chứng minh rằng:
a)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\)<1
b)\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)<2
c)\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)<\(\frac{3}{4}\)
d)\(\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+...+\frac{1}{n^3}\)<\(\frac{1}{12}\)\(\left(n\in N;n\ge3\right)\)
e)\(\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)<1 (n nguyên dương)
g)\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2048}\)>3
h)\(\left(\frac{2}{1}\right)\left(\frac{4}{3}\right)\left(\frac{6}{5}\right)...\left(\frac{200}{199}\right)\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Tính nhah ---- giúp mik giải nâ các bn thank nhiều nhiều
a)\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}+\frac{1}{3}\)
b) \(\frac{\frac{1}{3}-\frac{1}{5}-\frac{1}{7}}{\frac{2}{3}-0,4-\frac{2}{7}}+\frac{\frac{3}{8}-\frac{3}{16}-\frac{3}{32}+\frac{3}{64}}{\frac{1}{4}-\frac{1}{8}-\frac{1}{16}+\frac{1}{32}}\)
c) \(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
1. Tính ( bằng 2 cách ) :
a ) S= 1+2+3+...+2018
b ) S = 1+3+5+.....+2019
2. Tính ( bằng 2 cách )
a ) S= 2+22 + 23 + 24 + ....+ 22018
b ) S = 1+4+7+10+.....+2020
c) B= 1+6+11+16+....+2021
d ) A = 3+32 + 33 +....+32005
e) E = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\)
a) Cho \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{60}\)
Chứng minh \(\frac{3}{5}< S< \frac{4}{5}\)
b) Chứng minh \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{100}>\frac{7}{10}\)
c) Chứng minh \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên d) Chứng minh \(\frac{1}{15}< D< \frac{1}{10}với\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)Bạn tham khảo ở link này nhé :
tính b
b=\(\frac{0,275-0,5+\frac{3}{11}}{0,625+0,5+\frac{5}{11}}:\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
So sánh
A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^9}+.....+\frac{1}{3^{33}}với\frac{1}{2}\)
Bài 1 : Tính
Cho A =\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+......+\frac{1}{60}>\frac{7}{12}\)
B = \(\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{5^2}+......+\frac{ }{50^{21}}\)
CMR B >\(\frac{1}{4}\)và B < \(\frac{4}{9}\)
C = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......\frac{79}{80}< \frac{1}{9}\)
Chứng minh rằng: a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Nhanh lên nhé! Mk đang cần gấp.
\(3B=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(B=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4B=3B+B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
+ Đặt \(M=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(3M=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
\(\Rightarrow4M=3M+M=3-\frac{1}{3^{99}}\)
\(\Rightarrow M=\frac{3}{4}-\frac{1}{3^{99}\cdot4}\)
\(\Rightarrow4B=M-\frac{100}{3^{100}}=\frac{3}{4}-\frac{1}{3^{99}\cdot4}-\frac{100}{3^{100}}\)
\(\Rightarrow B=\frac{3}{16}-\frac{1}{3^{99}\cdot16}-\frac{100}{3^{100}\cdot4}\) \(\Rightarrow B< \frac{3}{16}\)
a) \(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
\(\Rightarrow3A=2A+A=1-\frac{1}{2^6}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{2^6\cdot3}< \frac{1}{3}\) ( đpcm )
tính hợp lí ( nếu có thể )
\(B=\left(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}\right):\left(\frac{5}{12}+1-\frac{7}{11}\right)\)
\(C=\left(-\frac{14}{33}\right).2\frac{4}{9}+\frac{48}{25}:\frac{27}{25}\)
\(D=\left(3-2\frac{1}{3}+\frac{1}{4}\right):\left(4-5\frac{1}{6}+2\frac{1}{4}\right)\)
\(G=\left(7\frac{1}{9}-2\frac{14}{15}\right):\left(2\frac{2}{3}-6\frac{2}{3}\right)-\frac{32}{45}\)
\(H=-\frac{1}{7}.\left(9\frac{1}{2}-8,75\right):\frac{2}{7}+0,625:1\frac{2}{3}\)
B= (2/3-1/4+5/11):(5/12+1-7/11)
B=(8/12-3/12+5/11):(5/12+1-7/11)
B=(5/12+5/11):(5/12+1-7/11)
B=115/132:(17/12-7/11)
B=115/132:103/132
B=115/103
Mik làm mẫu cho 1 con nè. các câu sau cxn tương tự từ trái wa phải.Nều bạn tính toán kém thì cứ làm như câu mẫu trên. Mik mà làm bài này thì mik làm theo cách nhanh hơn cơ. Chúc bạn học tốt và có 1 ngày tốt lành nghen. Có j cần giúp đỡ thì cứ bảo mik
Dễ mà bạn. Nếu thấy dài wa hoặc bạn thấy khó thì cứ tính từ trái qua phải đi. MIk xem mik cxn đã thấy mún ngất r đây.
a) Cho \(s=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
CMR 1<s<2, từ đó suy ra s ko phải stn
b) Cho \(s=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+....+\frac{1}{60}\)
CMR 3/5< s < 4/5
a)ta có:
\(\frac{3}{10}\)>\(\frac{3}{15}\)
\(\frac{3}{11}\)>\(\frac{3}{15}\)
...
\(\frac{3}{14}\)>\(\frac{3}{15}\)
Cộng từng vế của bất đẳng thức trên ta được:
\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)+\(\frac{3}{15}\)
Hay S>\(\frac{15}{15}\)=>S>1 (1)
ta có :
\(\frac{3}{11}\)<\(\frac{3}{10}\)
\(\frac{3}{12}\)<\(\frac{3}{10}\)
...
\(\frac{3}{14}\)<\(\frac{3}{10}\)
Cộng từng vế của bất đẳng thức trên ta được:
\(\frac{3}{10}\)+\(\frac{3}{11}\)+\(\frac{3}{12}\)+\(\frac{3}{13}\)+\(\frac{3}{14}\)<\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)+\(\frac{3}{10}\)
Hay S<\(\frac{15}{10}\)<\(\frac{20}{10}\)=2
Vậy S<2 (2)
Theo câu 1 ta có : S>1
Theo câu 2 ta có :S<2
Vậy 1<S<2
=>S ko phải số tự nhiên
CMR:
a, \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b, \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)