Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Anh Vũ
Xem chi tiết
Reii
Xem chi tiết
Ngọc Như Vũ Phan
Xem chi tiết
nguyễn thị hương giang
8 tháng 11 2021 lúc 23:32

Câu 20.

\(C_n^2+C_n^3=4n\)

Đk: \(n\ge3\)

Pt\(\Rightarrow\dfrac{n!}{2!\left(n-2\right)!}+\dfrac{n!}{3!\left(n-3\right)!}=4n\)

   \(\Rightarrow\dfrac{n\left(n-1\right)\left(n-2\right)!}{2\left(n-2\right)!}+\dfrac{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}{6\left(n-3\right)!}=4n\)

  \(\Rightarrow\dfrac{n\left(n-1\right)}{2}+\dfrac{n\left(n-1\right)\left(n-2\right)}{6}=4n\)

  Chia cả hai vế cho \(n\) ta được:

  \(\Rightarrow\dfrac{n-1}{2}+\dfrac{\left(n-1\right)\left(n-2\right)}{6}=4\)

  Bạn tự quy đồng giải pt bậc hai tìm n nhé.

 

Akai Haruma
9 tháng 11 2021 lúc 7:33

Câu 21:
\(\frac{1}{2}A^2_{2x}-A^2_x\leq \frac{6}{x}C^3_x+10\)

\(\Leftrightarrow \frac{1}{2}.\frac{(2x)!}{(2x-2)!}-\frac{x!}{(x-2)!}\leq \frac{6}{x}.\frac{x!}{3!(x-3)!}+10\)

\(\Leftrightarrow \frac{1}{2}.2x(2x-1)-(x-1)x\leq (x-1)(x-2)+10\)

\(\Leftrightarrow 12-3x\geq 0\Leftrightarrow x\leq 4\)

Mà $x$ tự nhiên, $x\geq 3$ nên $x=3, x=4$

Đáp án C. 

 

 

Yen Nhi
9 tháng 11 2021 lúc 13:29

Câu 20:

\(C^2_n+C^3_n=4n\)

\(\Leftrightarrow\dfrac{n.\left(n-1\right)}{2!}+\dfrac{4.\left(n-1\right).\left(n-2\right)}{3!}=4n\)

\(\Leftrightarrow\dfrac{n.\left(n-1\right)}{2}+\dfrac{n.\left(n-1\right).\left(n-2\right)}{6}=4n\)

\(\Leftrightarrow3n.\left(n-1\right)+n.\left(n-1\right).\left(n-2\right)=24n\)

\(\Leftrightarrow3n^2-3n+n.\left(n^2-3n+2\right)-24n=0\)

\(\Leftrightarrow n^3-25n=0\)

\(\Leftrightarrow n.\left(n^2-25\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n^2=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0\\\left[{}\begin{matrix}n=5\\n=-5\end{matrix}\right.\end{matrix}\right.\)

 

 

Mai Hiền
3 tháng 5 2021 lúc 9:51

14. B

19. C

20. A

21. A

22. D

23. B

Dương Trọng Trung
3 tháng 5 2021 lúc 10:19

CÂU :14. B

CÂU:19. C

CÂU:20. A

CÂU:21. A

22. D

23. B

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:43

12.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)

\(\Rightarrow M=\sqrt{2}\)

13.

Pt có nghiệm khi:

\(5^2+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow2m\le24\)

\(\Rightarrow m\le12\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:47

14.

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=k2\pi\)

15.

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

Đáp án A

16.

\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)

Có \(1008+1008=2016\) nghiệm

Choco7sweet
Xem chi tiết
Thao Thanh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 9 2021 lúc 7:32

21.

\(\left\{{}\begin{matrix}SA\perp AB\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAC\right)\)

E là trung điểm SA, F là trung điểm SB \(\Rightarrow\) EF là đường trung bình tam giác SAB

\(\Rightarrow EF||AB\Rightarrow EF\perp\left(SAC\right)\)

\(\Rightarrow EF=d\left(F;\left(SEK\right)\right)\)

\(SE=\dfrac{1}{2}SA=\dfrac{3a}{2}\) ; \(EF=\dfrac{1}{2}AB=a\)

 \(SC=\sqrt{SA^2+AC^2}=a\sqrt{13}\Rightarrow SK=\dfrac{2}{3}SC=\dfrac{2a\sqrt{13}}{3}\)

\(\Rightarrow S_{SEK}=\dfrac{1}{2}SE.SK.sin\widehat{ASC}=\dfrac{1}{2}.\dfrac{3a}{2}.\dfrac{2a\sqrt{13}}{3}.\dfrac{2a}{a\sqrt{13}}=a^2\)

\(\Rightarrow V_{S.EFK}=\dfrac{1}{3}EF.S_{SEK}=\dfrac{1}{3}.a.a^2=\dfrac{a^3}{3}\)

\(AB\perp\left(SAC\right)\Rightarrow AB\perp\left(SEK\right)\Rightarrow AB=d\left(B;\left(SEK\right)\right)\)

\(\Rightarrow V_{S.EBK}=\dfrac{1}{3}AB.S_{SEK}=\dfrac{1}{3}.2a.a^2=\dfrac{2a^3}{3}\)

Nguyễn Việt Lâm
21 tháng 9 2021 lúc 7:54

22.

Gọi D là trung điểm AB

Do tam giác ABC đều \(\Rightarrow CD\perp AB\Rightarrow CD\perp\left(SAB\right)\)

\(\Rightarrow CD=d\left(C;\left(SAB\right)\right)\)

\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)

N là trung điểm SC \(\Rightarrow d\left(N;\left(SAB\right)\right)=\dfrac{1}{2}d\left(C;\left(SAB\right)\right)=\dfrac{a\sqrt{3}}{2}\)

\(S_{SAB}=\dfrac{1}{2}SA.AB=a^2\sqrt{3}\) \(\Rightarrow S_{SAM}=\dfrac{1}{2}S_{SAB}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{SAMN}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.\dfrac{a^2\sqrt{3}}{2}=\dfrac{a^3}{4}\)

Lại có:

\(V_{SABC}=\dfrac{1}{3}SA.S_{ABC}=\dfrac{1}{3}.a\sqrt{3}.\dfrac{\left(2a\right)^2\sqrt{3}}{4}=a^3\)

\(\Rightarrow V_{A.BCMN}=V_{SABC}-V_{SANM}=\dfrac{3a^3}{4}\)

Nguyễn Việt Lâm
21 tháng 9 2021 lúc 7:32

Hình vẽ câu 21:

undefined

Dương Nguyễn
Xem chi tiết
Hồng Phúc
12 tháng 7 2021 lúc 21:25

Câu nào bạn, nếu mà cả thì đăng tách ra đi :)

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:55

1.

\(sin^2x-4sinx.cosx+3cos^2x=0\)

\(\Rightarrow\dfrac{sin^2x}{cos^2x}-\dfrac{4sinx}{cosx}+\dfrac{3cos^2x}{cos^2x}=0\)

\(\Rightarrow tan^2x-4tanx+3=0\)

2.

\(\Leftrightarrow\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

3.

\(\Leftrightarrow2^2+m^2\ge1\)

\(\Leftrightarrow m^2\ge-3\) (luôn đúng)

Pt có nghiệm với mọi m (đề bài sai)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:58

4.

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow x-\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)

6.

ĐKXĐ: \(cosx\ne0\)

Nhân 2 vế với \(cos^2x\)

\(sin^2x-4cosx+5cos^2x=0\)

\(\Leftrightarrow1-cos^2x-4cosx+5cos^2x=0\)

\(\Leftrightarrow\left(2cosx-1\right)^2=0\)

\(\Leftrightarrow cosx=\dfrac{1}{2}\Rightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)