Tìm tất cả các số m,n để \(3^{3m^2+6n-61}+4\)là số chính phương
tìm m,n thuộc N để \(3^{3m^2+6n-61}+4\)
là số nguyên tố
Đặt \(\hept{\begin{cases}A=3^{3m^2+6n-61}+4\\t=3m^2+6n-61\end{cases}}\)
Ta có t chia cho 3 dư 2 nên t = 3k + 2
\(A=3^{3k+2}+4=9.27^k+4\)
Ta có 27 chia 13 dư 1 nên \(9.27^k\)chia cho 13 dư 9
\(\Rightarrow9.27^k+4\) chia hết cho 13
Vậy A = 13
=> k = 0 => t = 2
=> 3m2 + 6n - 61 = 2
<=> m2 + 2n = 21
Ta nhận xét là m2 là bình phương của số lẻ nhỏ hơn 21
=> m2 = (1, 9)
=> m = (1; 3)
=> n = (10; 6)
Tìm tất cả các số tự nhiên m,n sao cho x3m^2++6n-61 +4 à số nguyên tố.
Tìm số tự nhiên m, n thỏa mãn \(3^{3m^2+6n-61}+4\) là số nguyên tố
Tìm m,n thuộc N để \(3^{3m^2+6n-61}+4\)la số nguyên tố
Ta có: \(3m^2+6n-61\)chia cho 3 dư 2 nên ta đặt
\(3m^2+6n-61=3k+2\)
\(\Rightarrow A=3^{3m^2+6n-61}+4=3^{3k+2}+4=9.27^k+4\)
Ta có 27 chia 13 dư 1 nên \(27^k\)chia 13 dư 1
\(\Rightarrow9.27^k\)chia 13 dư 9
\(\Rightarrow9.27^k+4\)chia hết cho 13 hay A chia hết cho 13
Mà A là số nguyên tố nên A = 13
\(\Rightarrow k=0\)
\(\Rightarrow3m^2+6n-61=2\)
\(\Leftrightarrow m^2+2n=21\left(1\right)\)
Từ (2) ta có được m2 phải là số lẻ và nhỏ hơn 21
\(\Rightarrow m^2=\orbr{\begin{cases}1\\9\end{cases}\Rightarrow m=\orbr{\begin{cases}1\\3\end{cases}}}\)
\(\Rightarrow n=\orbr{\begin{cases}10\\6\end{cases}}\)
Vậy giá trị \(\left(m,n\right)=\left(1,10;3,6\right)\)
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Tìm tất cả các số nguyên n để n^4 + 3n^3 + 3n^2 là số chính phương
Lời giải:
$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$
Để $A$ là scp thì $n^2+3n+3$ là scp.
Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.
$\Rightarrow 4n^2+12n+12=4x^2$
$\Rightarrow (2n+3)^2+3=4x^2$
$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$
Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.
Tìm tất cả các số nguyên n (n\(\ne\)0) để số \(M=n^4-n^3+13n^2\)là số chính phương
Tìm n,m là số tự nhiên sao cho A là số nguyên tố:
\(A=3^{3m^2+6n-61}+4\)