cho a,b dương. CM : dấu bằng xảy ra khi nào
cho a,b dương : CM a/b+b/a>=2 đấu bằng xảy ra khi nào
Áp dụng BĐT cosi cho 2 số a,b dương ta có
\(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)2.\(\sqrt{\frac{a}{b}.\frac{b}{a}}\)
\(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)2.\(\sqrt{1}\)=2
vậy \(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)2
dấu = xảy ra khi\(\frac{a}{b}\)=\(\frac{b}{a}\)<=> \(a^2\)=\(b^2\) <=> a=b(vì a,b dương)
cho a,b là 2 so dương thỏa mãn a^5+b^5=a^7+b^7 . Chứng minh a^2+b^2 nhỏ hơn hoặc bằng ab+1 .Dấu đẳng thức xảy ra khi nào?
Cho a,b > 0 . CM a^2b - 3ab + ab^2 + 1 > 0 . Dấu bằng xảy ra khi nào ?
Áp dụng cô-si cho ba dương ta có : \(x+y+z\ge3\sqrt[3]{xyz}\)
Suy ra : \(a^2b+ab^2+1-3ab\ge3\sqrt[3]{a^2b.ab^2.1}-3ab=3ab-3ab=0\)
Dấu bằng xảy ra khi \(a^2b=ab^2=1\Rightarrow a=b=1\)
Cho a, b, c là các số thực dương, chứng minh rằng:
\(\frac{a}{c}+\frac{c}{b}\ge\frac{4a}{a+b}\)
Dấu bằng xảy ra khi nào?
Bài 3 : (3đ)
1. Chứng minh rằng với hai số thực bất kì a,b ta luôn có : \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
Dấu bằng xảy ra khi nào ?
2. Cho ba số thực a,b,c không âm sao cho \(a+b+c=1\)
Chứng minh : \(b+c\ge16abc\) . Dấu bằng xảy ra khi nào ?
Nhân tiện em cũng hỏi luôn là tại sao khi em đăng bài mặc dù em đã điền đủ lớp môn ; mạng không lag mà sao vẫn không thể đăng bài được . Em phải mất tận 2 lần ghi lại đề bài mới có thể đăng bài được.
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
A) Cho a>0 , b>0. Cmr : a+b >=2√ab . Dấu = xảy ra khi nào?
B) Cho biết x>2 , cmr : x + 4/x - 2 >= 6 . Dấu = xảy ra khi nào?
C) Cho a, b>0 , chứng minh (a+b) (1/a + 1/b) >= 4. Dấu = xảy ra khi nào?
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
cho a,b ≥0 , \(\sqrt{a}\)+\(\sqrt{b}\)+1
cm: 64ab(a+b)\(^2\)≤1.dấu bằng xảy ra khi nào
Áp dụng \(\dfrac{\left(x+y\right)^2}{4}\ge xy\):
\(2\sqrt{ab}\left(a+b\right)\le\dfrac{\left(2\sqrt{ab}+a+b\right)^2}{4}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\dfrac{1}{4}\)
<=> \(\sqrt{ab}\left(a+b\right)\le\dfrac{1}{8}\)
<=> \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) => 64ab(a+b)2 \(\le1\)
Dấu "=" <=> a = b = \(\dfrac{1}{4}\)
cho các số thực dương a b c thỏa mãn a+ b+ c<=2 . cmr P=a +b-2c+ 1/a +1/b +1/c>=4.Dấu =xảy ra khi nào?
Cho a, b là các số dương. Chứng tỏ: \(\dfrac{b}{a}+\dfrac{a}{b}\ge2\), dấu bằng xảy ra khi nào.
Ta có BĐT : a2 + b2 ≥ 2ab
=> \(\dfrac{a^2+b^2}{ab}\) ≥ 2
=> \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ a
Dấu " = " xảy ra khi : a = b
\(\text{ Ta có : }\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{b^2}{ab}+\dfrac{a^2}{ab}\\ \\ =\dfrac{a^2+b^2}{ab}\)
Áp dụng BDT Cô-si: \(x^2+y^2\ge2xy\)
\(\Rightarrow\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}\ge2\left(đpcm\right)\)
Vậy \(\dfrac{b}{a}+\dfrac{a}{b}\ge2\). Đẳng thức xảy ra khi \(a=b\)