Tìm số nguyên dương n để \(\frac{n+13}{n-2}\) là phân số tối giản.
Tìm số nguyên dương n để \(\frac{n+13}{n-2}\) là phân số tối giản.
Giúp nha toán 6 đó
ta có n+13/n-2 là phân số tối giản khi ƯCLN(n+13;n-2)=1
Mà [(n+13)-(n-2)]=15 nên ƯCLN (n-2;15)=1
suy ra 15 không chia hết cho n-2
suy ra n-2 không thuộc ước của 15
mà n là SND nên n-2>=-1
n-2 không thuộc{-1;1;3;5;15}
n không thuộc {1;3;5;7;17;2}(vì để n+13/n-2là phân số thì n khác 2)
vậy n thỏa mãn với toàn bộ số nguyên dương khác 1;3;5;7;17 và2
Tìm tất cả các số nguyên dương n để các phân số sau là tối giản: \(\frac{n+13}{n-2};\frac{18n+3}{21n+7}\)
Tìm số nguyên dương n để:
n+13/n-2 (là phân số tối giản)
Để n+13/n-2 là phân số tối giản thì:
n+13 chia hết cho n-2
<=> (n-2)+15 chia hết cho n-2
ta thấy: n-2 chia hết cho n-2
=> 15 phải chia hết cho n-2
=> n-2 thuộc Ư(15)
n-2 thuộc { 1: 3: 5: 15}
n thuộc { 3; 5; 7; 17}
Tìm n nguyên dương để phân số n+13/n-2 tối giản.
1. Tìm tất cả số nguyên dương n để phân số \(\frac{n+13}{n-2}\)tối giản.
2 Tìm tất cả các số tự nhiên để phân số \(\frac{5n+6}{6n+5}\)không tối giản.
Nhớ ghi cách giải cụ thể nhen!!!!!!!!!!!
a)Tìm tất cả các số dương n để các phân số sau là tối giản:\(\frac{n+13}{n-2};\frac{18n+3}{21n+7}\)
b)Tìm tất cả các số nguyên n để\(\frac{7n+8}{8n+7}\)có thể rút gọn được
c)Chứng minh rằng nếu\(\frac{5n^2+1}{6}\)nhận giá trị nguyên thì\(\frac{n}{2};\frac{n}{3}\)là các phân số tối giản
Tìm số tự nhiên n để phân số \(\frac{n+13}{n-2}\) là phân số tối giản (dùng ước nguyên tố nhé các bạn)
bạn ấn vào đúng 0 sẽ ra kết quả
Tìm số nguyên dương n nhỏ nhất để các phân số sau đều là các phân số tối giản
\(\frac{1}{n+3},\frac{2}{n+4},...,\frac{p-2}{n+p},\frac{p-1}{n+p+1}\) (p là số nguyên tố lẻ cho trước)
Giúp mk vs
Cảm ơn nhiều ạ!!
tìm số nguyên dương n nhỏ nhất để các phân số sau đều tối giản
\(\frac{1}{n+3},\frac{2}{n+4},\frac{3}{n+5},...,\frac{2001}{n+2003},\frac{2002}{n+2004}\)
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
nhớ k nha
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001