Tìm k để PT : -x3 +3x2 + k3 - 3k2 =0 có 3 nghiệm phân biệt
Tìm m để phương trình x 3 − 3 x 2 + 1 − m = 0 có 4 nghiệm phân biệt.
A. m < − 3
B. m > 1
C. − 3 < m < 1
Đáp án C
Xét hàm số f x = x 3 − 3 x 2 + 1 có:
f ' x = 3 x 2 − 6 x = 3 x x − 2 ⇒ f ' x = 0 ⇔ x = 0 x = 2
Ta có bảng biến thiên của như sau:
Từ bảng biến thiên này ta có bang biến thiên của f x = x 3 − 3 x + 1 như sau:
Dựa trên bảng biến thiên này ta thấy PT:
x 3 − 3 x 2 + 1 - m = 0 ⇔ x 3 − 3 x 2 + 1 = m có 4 nghiệm phân biệt ⇔ − 3 < m < 1
Cho hàm số y = x 3 - 3 x 2 + 3 có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị của tham số m để phương trình x 3 - 3 x 2 + m = 0 có ba nghiệm phân biệt
A. 0 ≤ m ≤ 4
B. - 4 ≤ m < 0
C. - 4 ≤ m ≤ 0
D. 0 < m < 4
Cho pt: x^3 - mx^2 -x +m=0
Tìm m để: a) pt có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x1^2 + x2^2 + x3^2 <= 2 (bé hơn hoặc bằng)
b) pt có 2 nghiệm phân biệt
c) pt có 3 nghiệm x1, x2, x3 sao cho 1/ x1 + 1/x2 + 1/x3 =4
Tìm m để phương trình: x 3 − 3 x 2 + mx + 2 − m = 0 có 3 nghiệm phân biệt lập thành 1 cấp số cộng:
A. m ∈ − 3 ; + ∞ .
B. m ∈ ℝ .
C. m = 3
D. m ∈ − ∞ ; 3 .
Đáp án D
· Điều kiện cần:
Giả sử phương trình đã cho có 3 nghiệm phân biệt x 1 ; x 2 ; x 3 lập thành một cấp số cộng
Khi đó: x 1 + x 3 = 2 x 2 x 1 + x 2 + x 3 = 3 ⇔ 3 x 2 = 3 ⇔ x 2 = 1 .
Với x 2 = 1 thay vào phương trình ta được:
1 − 3 + m + 2 − m = 0 (luôn đúng).
Phương trình đã cho có 3 nghiệm phân biệt tương đương với phương trình (*) có 2 nghiệm phân biệt khác 1.
cho pt: \(x^3-x^2+2mx-2m=0\left(1\right)\)
a, Tìm m để phương trình có ba nghiệm phân biệt x1,x2,x3 tm: x1+x2+x3=10
b,Tìm m để phương trình có ba nghiệm phân biệt đều lớn hơn hoặc bằng 1.
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
Đồ thị hàm số y = - x 3 + 3 x 2 - 4 . Để phương trình x 3 - 3 x 2 + m = 0 có hai nghiệm phân biệt thì
A. 0 < m < 4
B. m = 4
C. m = 0 m = 4
D. m = 0 m = - 4
Tìm m để phương trình x 3 − 3 x 2 − 9 x + m = 0 có ba nghiệm phân biệt lập thành cấp số cộng.
A. m = 16
B. m= 11
C. m= 13
D. m = 12
Chọn B.
Điều cần cần:
Giả sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng.
Khi đó: x 1 + x 3 = 2 x 2 ,
Lại có :
x 1 + x 2 + x 3 = − b a = 3 ⇒ x 2 = 1
Thay vào phương trình ta được: 13 – 3.12 – 9.1 + m =0
⇔ m = 11
* Điều kiện đủ : Với m =11 phương trình trở thành :
x 3 − 3 x 2 − 9 x + 11 = 0
⇔ x − 1 x 2 − 2 x − 11 = 0 ⇔ x 1 = 1 − 12 , x 2 = 1, x 3 = 1 + 12
Ba nghiệm này lập thành cấp số cộng.
Vậy m =11 là giá trị cần tìm.
Tìm m để các pt 3x2 -4x +2m=0 a) có nghiệm b) có 2 nghiệm phân biệt c) có nghiệm kép d) vô nghiệm
Lời giải:
$\Delta'=4-6m$
a. Để pt có nghiệm thì $\Delta'=4-6m\geq 0\Leftrightarrow m\leq \frac{2}{3}$
b/ Để pt có 2 nghiệm phân biệt thì $\Delta'=4-6m>0\Leftrightarrow m< \frac{2}{3}$
c. Để pt có nghiệm kép thì $\Delta'=4-6m=0\Leftrightarrow m=\frac{2}{3}$
d. Để pt vô nghiệm thì $\Delta'=4-6m< 0\Leftrightarrow m> \frac{2}{3}$
a: \(\text{Δ}=\left(-4\right)^2-4\cdot3\cdot2m=-24m+16\)
Để phương trình có nghiệm thì \(\text{Δ}\ge0\)
\(\Leftrightarrow-24m+16\ge0\)
\(\Leftrightarrow-24m\ge-16\)
hay \(m\le\dfrac{2}{3}\)
b: Để phương trình có hai nghiệm phân biệt thì Δ>0
hay \(m< \dfrac{2}{3}\)
c: Để phương trình có nghiệm kép thì Δ=0
hay \(m=\dfrac{2}{3}\)
d: Để phương trình vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow-24m+16< 0\)
\(\Leftrightarrow-24m< -16\)
hay \(m>\dfrac{2}{3}\)
Tìm m để phương trình x 3 − 3 x 2 − 9 x + m = 0 (1) có ba nghiệm phân biệt lập thành cấp số cộng.
A. m = 10
B. m = 11
C. m = 12
D. m = 9
Đáp án A
Điều kiện cần: Giả sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng, khi đó
Giá trị của m để phương trình x 3 + 3 x 2 − 9 x + m = 0 có 3 nghiệm phân biệt là:
A. m ≠ 0
B. − 27 < m < 5
C. − 5 < m < 27
D. − 5 ≤ m ≤ 27
Đáp án B
Phương trình đã cho ⇔ x 3 + 3 x 2 − 9 x = − m
Lập bảng biến thiên hàm số y = x 3 + 3 x 2 − 9 x
Để phương trình ban đầu có 3 nghiệm phân biệt thì đường thẳng y = − m cắt đồ thị hàm số y = x 3 + 3 x 2 − 9 x tại 3 điểm phân biệt ⇔ − 5 < − m < 27 ⇔ − 27 < m < 5