Viết dưới dạng bình phương hoặc lập phương:
125x^3-75x^2y+15xy^2 -y^3Hãy viết mỗi bt sau dưới dạng bình phương hoặc lập phương của 1 tổng hoặc 1 hiệu :
a) x^3-3x^2+3x-1
b)16+8x+x^2
c) 3x^2+3x+1+x^3
d)1-2y+y^2
a) x^3-3x^2+3x-1
=x3-3x2.1+3x.12-13
=(x-1)3
b)16+8x+x^2
=42+2.4.x+x2
=(4+x)2
c) 3x^2+3x+1+x^3
=x3+3x2.1+3x.12+13
=(x+1)3
d)1-2y+y^2
=1-2.1.y+y2
=(1-y)2
TỔNG HAI LẬP PHƯƠNG VIết biểu thức sau dưới dạng tích 125x^3+64y^3
\(125x^3+64y^3=\left(5x+4y\right)\left(25x^2-20xy+16y^2\right)\)
Viết các biểu thức dưới dạng lập phương của tổng hoặc hiệu:
x^3/8+3/4x^2y^2+3/2xy^4+y^6
Bài làm:
Ta có: \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)
\(=\left(\frac{x}{2}\right)^3+3.\left(\frac{x}{2}\right)^2.y^2+3.\frac{x}{2}.\left(y^2\right)^2+\left(y^2\right)^3\)
\(=\left(\frac{x}{2}+y^2\right)^3\)
viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc hiệu B = (x/2 +y)^3 -6(x/2 + y )^2z + 6(x+2y)z^2 - 8z^3
`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`
`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`
`=(x/2+y-2z)^3`
Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)
\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)
Viết dưới dạng lập phương của 1 tổng hoặc 1 hiệu:
x^3/8+3/4x^2y^2+3/2xy^4
Bổ sung đề :
\(\dfrac{x^3}{8}+\dfrac{3}{4}x^2y^2+\dfrac{3}{2}xy^4+y^6=\left(\dfrac{x}{2}\right)^3+3.\left(\dfrac{x}{2}\right)^2+y^2+3\left(\dfrac{x}{2}\right)y^4+y^6=\left(\dfrac{x}{2}+y^2\right)^3\)
Viết các đa thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu
a) A = 8x^3 +12x^2y +6xy^2+y^3
b) B = x^3+3x^2+3x+1
c) C = x^3-3x^2+3x-1
d) D = 27+27y^2+9y^4+y^6
a) \(A=8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
b) \(B=x^3+3x^2+3x+1=\left(x+1\right)^3\)
c) \(C=x^3-3x^2+3x-1=\left(x-1\right)^3\)
d) \(D=27+27y^2+9y^4+y^6=\left(3+y^2\right)^3\)
Viết các biểu thức sau đây dưới dạng lập phương của 1 tổng hoặc hiệu:
a)x^3+9x^2+27x+27
b)x^3/8+3/4x^2y^2+3/2xy^4+y^6
1. Viết mỗi biểu thức sau về dạng tổng hoặc hiệu hai bình phương:
a) z2 - 6z + 5 - t2 - 4t
b) x2 - 2xy + 2y2 + 2y + 1
c) 4x2 - 12x - y2 + 2y + 8
2. Viết mỗi biểu thức sau dưới dạng hiệu hai bình phương:
a) (x + y + 4)(x + y - 4)
b) (x - y + 6)(x + y - 6)
c) (y + 2z - 3)(y - 2z - 3)
d) (x + 2y + 3z)(2y + 3z - x)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
:v dễ mà có trong nâng cao mới hc qua :3
a, x2+10x+26+y2+2y
=(x2+2.x.5+52)+(12+2.1.y+y2)
=(x+5)2+(y+1)2
b, x2−2xy+2y2+2y+1
=x2−2xy+y2+y2+2y+1
=(x2−2.x.y+y2)+(y2+2.y.1+12)
=(x−y)2+(y+1)2
c,z2−6z+5−t2−4t
=−(t2+4t−z2+6z−5)
=−(t2+2.t.2+22−z2+2.z.3−32)
=−((t2+2.t.2+22)−(z2−2.z.3+32))
=−((t+2)2−(z−3)2)
=(z−3)2−(t+2)2
Bài 1. Thực hiện phép tính:
a) (3a+1)3 b) (4-2b)3
c) (2c-3d)3 d) (3x/y-2y/x)3
Bài 2. Viết các biểu thức dưới dạng lập phương của một tổng hoặc hiệu:
a) x3+3x2+3x+1 b) m3+9m2n+27mn2+27n3
c) 8u3-48u2v+96uv2(4v)3
BÀI 3. Rút gọn biểu thức:
a) A=(a+b)3-(a-b)3
b) A=(u-v)3+3uv(u+v)
c) C=6(c-d)(c+d)+2(c-d)2-(c-d)3
Bài 4. Tính nhanh:
a) 1013 b) 2993 c) 993
Bài 5: Tìm x, biết:
a) x3-1-(x2+2x)(x-2)=5
b) (x+1)3-(x-1)3-6(x-1)2=-10