Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2018 lúc 4:30

Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Gọi trung điểm của AD là I, trung điểm BC là J.

Khi đó ta có: Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Mà theo quy tắc ba điểm ta có:

Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

⇔ I ≡ J hay trung điểm AD và BC trùng nhau (đpcm)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:47

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

Hà Quang Minh
25 tháng 9 2023 lúc 21:47

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

Sách Giáo Khoa
Xem chi tiết
Truy kích
30 tháng 3 2017 lúc 12:42

Nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì AD và BC có trung điểm trùng nhau. Gọi I là trung điểm của AD ta chứng minh I cũng là trung điểm của BC.

Theo quy tắc của ba điểm của tổng, ta có

\(\overrightarrow{AB}=\overrightarrow{AI}+\overrightarrow{IB};\overrightarrow{CD}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\overrightarrow{AB}=\overrightarrow{CD}\) nên \(\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{CI}+\overrightarrow{BI}\left(1\right)\)

Vì I là trung điểm của AD nên \(\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\left(2\right)\)

Từ (1) và (2) suy ra \(\overrightarrow{CI}+\overrightarrow{BI}=\overrightarrow{0}\left(3\right)\)

Từ (3) ta có chung điểm I, ta chứng minh \(\overrightarrow{AB}=\overrightarrow{CD}\)

I là trung điểm AD \(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{0}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{CI}+\overrightarrow{BI}=0\Rightarrow\overrightarrow{CI}-\overrightarrow{IB}=\overrightarrow{0}\)

Suy ra \(\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\)





Nhok Lạnh Lùng 2k6
Xem chi tiết
Trịnh Sảng và Dương Dươn...
31 tháng 5 2018 lúc 9:45

Bài 1 :

a) M là trung điểm của đoạn thẳng AB 

\(\Rightarrow MA=MB=\frac{1}{2}AB\). Thật vậy : Do M là trung điểm của AB nên theo đĩnh nghĩa ta có  

:\(MA+MB=AB\)VÀ \(MA=MB\)

\(\Rightarrow2MA=2MB=AB\)

\(\Rightarrow MA=MB\frac{1}{2}AB\)

b) Nếu \(MA=MB=\frac{1}{2}AB\Rightarrow\)M là trung điểm của đoạn thằng AB

Từ \(MA=MB=\frac{1}{2}AB\Rightarrow MA+MB=\frac{1}{2}AB+\frac{1}{2}AB=AB\)

Vậy \(MA+MB=AB\)VÀ \(MA=MB\)

Chứng tỏ M là trung điểm đoạn thẳng AB

Bài 2 :

Gọi O là trung điểm chung của AB VÀ CD. Ta có:

Gỉa sử :A và C cùng phía đối với O 

Ta thấy rằng 

\(\hept{\begin{cases}AC=OC-OA\\BD=OD-OB\end{cases}}\)

\(\Leftrightarrow\)\(AC=BD\)

\(\hept{\begin{cases}AD=OA+OD\\BC=OB+OC\end{cases}}\)

\(\Leftrightarrow AD=BC\)

Trường hợp A,C khác phía đối với O chứng minh tương tự

Mk k vẽ được hình xin lỗi bạn nhiều nha!

Chúc bạn học tốt ( -_- )

Khôi Nguyên Hacker Man
Xem chi tiết
Hoàng Thị Yến Nhi
Xem chi tiết
Thiên Ân
19 tháng 2 2018 lúc 11:54

O A D B C 1 2

Xét tam giác ADO và tam giác CBO có :

     O1 = O2 ( đối đỉnh )

    CO = OD ( gt )

    AO = OB ( gt ) 

Suy ra tam giác ADO = tam giác CBO

=> \(\widehat{ADO}=\widehat{OCB}\)( 2 góc tương ứng ) mà 2 góc này ở vị trí so le trong

=> AD // BC

    

Hà Khánh Ngân
Xem chi tiết
Mai Ngọc
4 tháng 1 2016 lúc 20:12

A D C O N M B

Xét \(\Delta\)AOD & \(\Delta\)COB có:

OA=OC(vì O là trung điểm AC)

góc AOD= góc COB(2 góc đối đỉnh)

OD=OB(vì O là trung điểm BD)

=>\(\Delta\)AOD=\(\Delta\)COB(c.g.c)

=>AD=CB(2 cạnh tương ứng)(1)

Vì N là trung điểm của AD

=>AN=ND=AD/2(2)

Vì M là trung điểm BC

=>MB=MC=BC/2(3)

Từ (1);(2);(3)=>AN=MC

Xét \(\Delta\)NOA & \(\Delta\)MOC có:

AN=MC(theo c/m trên)

ON=OM(vì O là trung điểm MN)

OA=ỌC(vì O là trung điểm AC)

=>\(\Delta\)NOA=\(\Delta\)MOC(c.c.c)

=>góc NOA= góc MOV(2 góc tương ứng)

Ta có: góc =180 độ

=>góc NOA+ góc NOC= 180 độ(2 góc kề bù)

=>góc MOC+góc NỚC=180 độ

=>góc NOM=180 độ

=>N,O,M thẳng hàng

 

 

2003
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2022 lúc 12:14

Xét tứ giác ABDC có

AD cắt BC tại trung điểm của mỗi đường

nên ABDC là hình bình hành

Suy ra: vecto AC=vecto BD

Đinh Xuân Trường
Xem chi tiết
Đào Trí Bình
Xem chi tiết