Bài 1. Cho 4 điểm A, B, C, D. Gọi M, N lần lượt là trung điểm của AD và BC.
a/ Chứng minh rằng vectoMN 1/2(vectoAB + vecto CD).
b/. Gọi O là điểm trên đoạn MN thỏa OM2ON. Chứng minh rằng: vectoOA - 2vectoOB -2vectoOC +vectoOD vceto 0
Bài 2. Cho tam giác ABC có O, G, H lần lượt là tâm đường tròn ngoại tiếp, trọng tâm va trực tâm tam giác.
a/. Gọi D là điểm đối xứng của A qua O. Chứng minh rằng tứ giác BHCD là hình bình hành.
b/. Chứng minh rằng vectoHA + vectoHB + vectoHC 2vectoHO...
Đọc tiếp
Bài 1. Cho 4 điểm A, B, C, D. Gọi M, N lần lượt là trung điểm của AD và BC.
a/ Chứng minh rằng vectoMN = 1/2(vectoAB + vecto CD).
b/. Gọi O là điểm trên đoạn MN thỏa OM=2ON. Chứng minh rằng: vectoOA - 2vectoOB -2vectoOC +vectoOD = vceto 0
Bài 2. Cho tam giác ABC có O, G, H lần lượt là tâm đường tròn ngoại tiếp, trọng tâm va trực tâm tam giác.
a/. Gọi D là điểm đối xứng của A qua O. Chứng minh rằng tứ giác BHCD là hình bình hành.
b/. Chứng minh rằng vectoHA + vectoHB + vectoHC = 2vectoHO
vectoOA + vectoOB + vectoOC = vectoOH
c/. Chứng minh rằng ba điểm O, G, H thẳng hàng
Ai biết giải giúp em với^^