Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức:C=(x+y)^2+(x-1)^2+(y+1)^2
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
A=(\(x\)-4)\(^2\)+1 B=\(\left|3x-2\right|\)-5 C=5-(2\(x\)-1)\(^4\)
D=-3(\(x\)-3)\(^2\)-(y-1)\(^2\)-2021 E=-\(\left|x^2-1\right|\)-(\(x\)-1)\(^2\)-y\(^2\)-2020
giúp mình với bài * khó quá
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
$E=-|x^2-1|-(x-1)^2-y^2-2020$
Ta thấy:
$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$
Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$
$\Leftrightarrow x=1; y=0$
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
b, ta có : \(x+y=1=>2x+2y=2\)
\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)
\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)
=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)
tìm giá trị lớn nhất giá trị nhỏ nhất của biểu thức của biểu thức M= (x^2-y^2)(1-x^2.y^2)/(1+x^2)^2.(1+y^2)^2
Bài 10. Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) x^2 + x+1 b) 2 + x - x^2 c) x^2 - 4x + 1
d) 4x^2 + 4x +11 e) 3x^2 - 6x + 1 f) x^2 -2x +y^2 -4y +6
g) h(h +1)(h +2)(h+3)
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
a) Tìm giá trị lớn nhất của biểu thức: B= 5-\(\left|\frac{1}{3}x+2\right|\)
b) Tìm giá trị nhỏ nhất của biểu thức:C=\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất trong các biểu thức sau:
A= (x-1)^2 +|y+3| +1
B=|x^2-1|+(x-1)^2+y^2
C=1/2*(x+1)^2+1
nhanh lên mình cần gấp
\(A=\left(x-1\right)^2+|y+3|+1\)
Ta thấy : \(\left(x-1\right)^2\ge0\)
\(|y+3|\ge0\)
Suy ra \(\left(x-1\right)^2+|y+3|+1\ge1\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy \(Min_A=1\)khi \(x=1;y=-3\)
\(B=|x^2-1|+\left(x+1\right)^2+y^2\)
Ta dễ dàng nhận thấy :
\(|x^2-1|\ge0\)
\(\left(x+1\right)^2\ge0\)
\(y^2\ge0\)
Cộng vế với vế ta được \(|x^2-1|+\left(x+1\right)^2+y^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-1=0\\x+1=0\\y=0\end{cases}< =>\hept{\begin{cases}x=\pm1\\x=-1\\y=0\end{cases}< =>\hept{\begin{cases}x=-1\\y=0\end{cases}}}}\)
Vậy \(Min_B=0\)khi \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
\(C=\frac{1}{2}.\left(x+1\right)^2+1\)
\(< =>C=\frac{\left(x+1\right)^2}{2}+1\)
Ta dễ dàng nhận thấy
\(\left(x+1\right)^2\ge0\)suy ra \(\frac{\left(x+1\right)^2}{2}\ge0\)
Nên ta được \(\frac{\left(x+1\right)^2}{2}+1\ge1\)
Dấu = xảy ra khi và chỉ khi \(\frac{\left(x+1\right)^2}{2}=0\)
Tương đương \(\left(x+1\right)^2=0\)
\(< =>x+1=0< =>x=-1\)
Vậy \(Min_C=1\)khi \(x=-1\)
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức
A=10-|x|-(y+4)4
B=|2x+6|+(x-y)2-5