giúp mk nha gpt
3\(\sqrt{2+x}\)\(-6\sqrt{2-x}\)\(+4\sqrt{4-x^2}\)\(=10-3x\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
giải giúp mk nha:
\(\sqrt{x}+\sqrt{3x+2}=4+2\sqrt{2}\)
giải pt:
a) \(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\)
b) \(3x+\sqrt{4x^2-8x+4}=1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
giúp mk vs ạ mk cần gấp
giải pt:
a) \(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\)
b) \(3x+\sqrt{4x^2-8x+4}=1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
giúp mk vs ạ mk cần gấp
a,ĐKXĐ:\(x\ge2\)
\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
b,ĐKXĐ:\(x\in R\)
\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(x\ge0\)
\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)
1) giải pt:
a) \(\sqrt{3x+10}=4\)
b) \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\)
c) \(\sqrt{2x+1}=3\)
d) \(\sqrt{2x+1}+1=x\)
giúp mk vs ah
a) \(\sqrt{3x+10}=4\left(đk:x\ge-\dfrac{10}{3}\right)\Leftrightarrow3x+10=16\Leftrightarrow x=2\)
b) \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\Leftrightarrow\sqrt{\left(3x-1\right)^2}=\sqrt{\left(x+4\right)^2}\Leftrightarrow3x-1=x+4\Leftrightarrow2x=5\Leftrightarrow x=\dfrac{5}{2}\)
c) \(\sqrt{2x+1}=3\left(đk:x\ge-\dfrac{1}{2}\right)\Leftrightarrow2x+1=9\Leftrightarrow x=4\)
d) \(\sqrt{2x+1}+1=x\left(đk:x\ge1\right)\Leftrightarrow\sqrt{2x+1}=x-1\Leftrightarrow2x+1=x^2-2x+1\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)\(\Leftrightarrow x=4\)(do \(x\ge1\))
a: Ta có: \(\sqrt{3x+10}=4\)
\(\Leftrightarrow3x+10=16\)
\(\Leftrightarrow3x=6\)
hay x=2
b: Ta có: \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\)
\(\Leftrightarrow\left|3x-1\right|=\left|x+4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=x+4\\3x-1=-x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\4x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
c: Ta có: \(\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow x=4\)
B= \(\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}\) +\(\frac{\sqrt{x}+2}{1-\sqrt{x}}\) tifm GTLN cua B
giúp mk với, mk đang cần gấp nha
Bạn tự thu gọn thành 1+\(\frac{1}{\sqrt{x}+2}\) <= 1+\(\frac{1}{2}\)=\(\frac{3}{2}\) <=> x = 0
1) giải pt:
a) \(\sqrt{2-3x}=2\)
b) \(\sqrt{x^2+4x+4}=x-2\)
c) \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
a) ĐKXĐ: x <= 2/3
Pt --> 2 - 3x = 4
<=> 3x = -2
<=> x = -2/3 (thỏa)
b) ĐKXĐ: x >= 2
Pt --> x^2 + 4x + 4 = x^2 - 4x + 4
<=> 8x = 0<=> x = 0(loại)
a: Ta có: \(\sqrt{2-3x}=2\)
\(\Leftrightarrow2-3x=4\)
\(\Leftrightarrow3x=-2\)
hay \(x=-\dfrac{2}{3}\)
b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)
\(\Leftrightarrow\left|x+2\right|=x-2\)
\(\Leftrightarrow x+2=2-x\left(x< -2\right)\)
\(\Leftrightarrow x=0\left(loại\right)\)
Tìm x để A < 2 với :
A = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
Mấy bạn giúp mk nha......cảm ơn m bạn ^^
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)}{\sqrt{x}^3-8}-\frac{\left(x-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}^3-8}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right)\)\(:\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\frac{\sqrt{x}^3+2x+4\sqrt{x}-\sqrt{x}^3+2x+3\sqrt{x}-6-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}.\frac{\left(x+2\sqrt{x}+4\right)}{\sqrt{x}+7}\)
\(=\)\(\frac{\left(4x-16\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}=\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
Sai đề không ?
A= \(\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)-\left(x-3\right)\left(\sqrt{x}-2\right)-7\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\right)\) . \(\frac{x+2\sqrt{x}+4}{\sqrt{x}+7}\)
= \(\frac{x\sqrt{x}+2x+4\sqrt{x}-x\sqrt{x}+3\sqrt{x}-6+2x-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4x-16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
=\(\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4\left(\sqrt{x}+2\right)}{\sqrt{x}+7}\)
= \(\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)
#mã mã#
Cám ơn bạn mã mã , để mình làm nốt nhé :
\(A=\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)
Để \(A>2\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}>2\)
\(\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}-2>0\)
\(\Rightarrow\frac{4\sqrt{x}+8-2\sqrt{x}-14}{\sqrt{x}+7}>0\)
\(\Rightarrow\frac{2\sqrt{x}-6}{\sqrt{x}+7}>0\)
Vì \(\sqrt{x}>0\Rightarrow\sqrt{x}+7>0\)\(\Rightarrow A>0\Leftrightarrow2\sqrt{x}-6>0\)
\(\Rightarrow2\left(\sqrt{x}-3\right)>0\Rightarrow\sqrt{x}-3>0\)
\(\Leftrightarrow\sqrt{x}>3\Rightarrow\sqrt{x}>\sqrt{9}\Rightarrow x>9\)
Vậy để \(A>2\Leftrightarrow x>9\)
Mọi Người giải giúp mình mấy bài này nha
a)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x+4}{\sqrt{x^2+4}}\)
b)\(\sqrt{3x+1}-\sqrt{6-x}+3x^2+14x-3=0\)
c)\(\sqrt[3]{x+6}+\sqrt{x-1}=x^2-1\)
Cảm ơn nhiều ạ =))