Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : \(P=5^{2x}+5^y\) biết rằng \(x\ge0,y\ge0,x+y=1\)
Cho các số x,y ϵ R thỏa mãn hệ bất phương trình sau \(\left\{{}\begin{matrix}x+y\ge3\\x\ge0\\y\ge0\\2x+y\le6\end{matrix}\right.\). Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: F = 5x-6y+2021
Cho \(x\ge0,y\ge0\) và thỏa mãn \(x+y=1\). Tìm giá trị lớn nhất của biểu thức: \(A=x^2y^2\left(x^2+y^2\right)\)
Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$
$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$
$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
Câu 1: Cho biểu thức: \(A=x\sqrt{3+y}+y\sqrt{3+x},với\)\(x\ge0;y\ge0;x+y=2016\). Tìm giá trị nhỏ nhất của A
Cho \(x\ge0,y\ge0,z\ge0\)thỏa mãn x+5y=21 và 2x+3z=51> Tìm giá trị ớn nhất của biểu thức P=(x+y+z)^2
Mình cần giải gấp
đề nga sơn kaka , anh vừa làm xong , 3x+5y+3z=51+21
3.(x+y+z)=72-2y
x+y+z=72-2y/3
x+y+z bé hơn hoạc bằng 24
/x+y+z/^2 bé hơn hoạc bằng 24^2 , dấu bằng xảy ra khi nào ???????
a,Với giá trị nào của x thì biểu thức A = 20 - | x+5 | ,có giá trị lớn nhất, tìm giá trị lớn nhất đó.
b,Với giá trị nào của x thì biểu thức B = | y-3 | + 50 ,có giá trị nhỏ nhất, tìm giá trị của nó.
c,Với giá trị nào của x và y thì biểu thức C = | x-100 | + | y+200 | -1 có giá nhỏ nhất. Tìm giá trị của nó.
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
a,Vì \(|x+5|\ge0\) với \(\forall x\)
=>\(A\le20\)
Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)
x=-5
Vậy Max A=20 khi x=-5
a, Vì /x+5/ >= 0 nên để A lớn nhất thì /x+5/ phải nhỏ nhất nên /x+5/ = 0 nên x=-5
Vậy A=20-/-5+5/=20-0=20
b,c Tương tự câu a
cho x,y thuộc Z :
a) với giá trị nào của x thì biểu thức :
A = 1000 - | x - 5 | có giá trị lớn nhất . tìm giá trị lớn nhất đó
b) với giá trị nào của y thì biểu thức :
B = | y - 3 | + 50 có giá trị nhỏ nhất.tìm giá trị nhỏ nhất
c) với giá trị nào của x,y thì biểu thức
C = | x - 100 | + | y + 200 | - 1 có giá trị nhỏ nhất . tìm giá trị nhỏ nhất đó
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Khó vậy bạn
Mình mới lớp 7
Ai cho mình xin k nhé
Thanks
Thắng Nguyễn làm đúng rồi đấy các bn, tham khảo nha
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r