tìm SNT p sao cho 2 số p+4 và p+8 đều là SNT(các bạn nhớ viết lời giải)
b1 Tìm stn p sao cho p+2 và p+4 đều là số nguyên tố
b2 cho p và p+8 đều là snt>3 hỏi p+100 có phải snt ko
b3 1 snt p: 42 có dư là hợp số.tìm số dư
b4 tổng của 3 snt là 1990 .tìm số nhỏ nhất trog 3 số.
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25
Tìm STN sao cho:
p^2+4 và p^2-4 đều là SNT
giải nhanh giúp mình với nhé
Ta có \(p^2-4=\left(p-2\right)\left(p+2\right)\) có ít nhất 2 ước là \(p-2\) và \(p+2\) nên nó là số nguyên tố khi và chỉ khi \(p-2=1\) đồng thời \(p+2\) là số nguyên tố
\(\Rightarrow p=2+1=3\) (thỏa mãn)
Thay vào kiểm tra ta thấy \(p^2+4=3^2+4=13\) cũng là số nguyên tố
Vậy \(p=3\)
Nếu p = 2 ⇒ p2 + 4 = 4 + 4 = 8 (loại)
Nếu p = 3 ⇒ p2 + 4 = 32 + 4 = 9 + 4 = 13 (nhận)
p = 3 ⇒ p2 - 4 = 32 - 4 = 9 - 4 = 5 (nhận)
Nếu p > 3 Thì p không chia hết cho 3;
⇒ p2 : 3 dư 1 (tính chất số chính phương)
⇒ p2 - 4 ⋮ 3 (loại)
Vậy p = 3
Nếu p = 2 ⇒ p2 + 4 = 4 + 4 = 8 (loại)
Nếu p = 3 ⇒ p2 + 4 = 32 + 4 = 9 + 4 = 13 (nhận)
p = 3 ⇒ p2 - 4 = 32 - 4 = 9 - 4 = 5 (nhận)
Nếu p > 3 Thì p không chia hết cho 3;
⇒ p2 : 3 dư 1 (tính chất số chính phương)
⇒ p2 - 4 ⋮ 3 (loại)
Vậy p = 3
bài 1: tìm SNT p sao cho :
a) p, p+2, p+4 là các SNT
b) p+10, p=14 là các SNT
c) p+2, p+6, p+14 là các SNT
bài 2: tìm 2 STN mà tổng và tích của nó là các SNT
bài 3:tìm n thuộc N sao cho p=(n-20)x(n2+n-1) là một SNT
Lưu ý : STN =số tự nhiên
SNT=số nguyên tố
cẩn thận nha
1)CMR 2n+1 và 2n(n+1) là 2 số nguyên tố cùng nhau.
2)Tìm SNT P sao cho P chia cho 42 có số dư r là một hợp số.Tìm số dư r.
3)Tìm SNT P sao cho các số sau cũng là SNT:
a)P+2 và P+10
b)P+10 và P+20
c)P+2;P+6;P+8;P+12;P+14;
bài 1
cho p và 8p-1 là snt
cmr 8p+1 ;à hợp số
bài 2:
cmr với mói snt >2 đều có dạng 4k+1
ai trả lời nhanh và đúng mình cho 3 cái
cản ơn các bạn
tìm SNT p sao cho các số p+3 và p+5 cũng là SNT
Nếu p = 2
=> p + 3 = 5 (tm)
p + 5 = 7 (tm)
Nếu p > 2 => p = 2k + 1
Khi đó p + 3 = 2k + 1 + 3 = 2k + 4 = 2(k + 2) \(⋮\)2 => loại
Vậy p = 2 là giá trị cần tìm
Tìm SNT p sao cho p + 2 và p + 4 là 2 SNT
, p+2, p+4 nguyên tố?
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố
*p # 3:
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố
Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3
TK nhé
p=3 vì bài nầy mình được cô giạy bồi dưỡng rồi
Bài 1 tìm SNT p sao cho
a) p+10 và p+14 là SNT
b) p+2;p+4;p+6;p+8 là SNT
Câu 5: Tìm số nguyên tố P sao cho:
a/ P+2 và P+4 là SNT.
b/ P+4 và P+14 là SNT