Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Tùng Chi
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 9 2021 lúc 9:52

1) \(\left(3x+2\right)^2-\left(x-6\right)^2=\left(3x+2-x+6\right)\left(3x+2+x-6\right)=\left(2x+8\right)\left(4x-4\right)=8\left(x+4\right)\left(x-1\right)\)

2) \(A=x^2+2y^2+2xy-2y+2021=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2020=\left(x+y\right)^2+\left(y-1\right)^2+2020\ge2020\)

\(minA=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

ILoveMath
2 tháng 9 2021 lúc 9:52

\(\left(3x+2\right)^2-\left(x-6\right)^2=\left(3x+2-x+6\right)\left(3x+2+x-6\right)=\left(2x+8\right)\left(4x-4\right)=2.\left(x+4\right).4\left(x-1\right)=8\left(x-1\right)\left(x+4\right)\)

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 14:07

Bài 1: 

Ta có: \(\left(3x+2\right)^2-\left(x-6\right)^2\)

\(=\left(3x+2-x+6\right)\left(3x+2+x-6\right)\)

\(=\left(2x+8\right)\left(4x-4\right)\)

\(=8\left(x+4\right)\left(x-1\right)\)

Mizuno Hanzaki
Xem chi tiết
umi
Xem chi tiết
Trần Thanh Phương
21 tháng 10 2018 lúc 21:00

Bài 1 :

a) \(x^2-6x+2023\)

\(=x^2-2\cdot x\cdot3+3^2+2014\)

\(=\left(x-3\right)^2+2014\ge2014\forall x\)

Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(B=\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)

Dễ thấy đây là HĐT thứ 2

\(B=\left(3x-5-3x-5\right)^2\)

\(B=\left(-10\right)^2\)

\(B=100\)

=> tự kết luận

Bài 2 :

\(x^2+4x-45\)

\(=x^2+9x-5x-45\)

\(=x\left(x+9\right)-5\left(x+9\right)\)

\(=\left(x+9\right)\left(x-5\right)\)

Quandung Le
21 tháng 10 2018 lúc 21:28

1a) A=x2 - 6x + 9 +2014

A= (x-3)2 + 2014

ta có: (x-3)2\(\ge\)0\(\forall x\)

\(\Rightarrow\left(x+3\right)^2+2014\ge2014\)

Dấu "=" xảy ra <=> (x+3)2 = 0

                        <=> x+3=0

                        <=> x = -3

Vậy Amin=2014 <=> x = -3

b) B= \(\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\) 

\(\left(3x+5-3x+5\right)^2\)

= 5= 25

2)\(x^2+4x-45\)

\(x^2+9x-5x-45\)

=\(x\left(x+9\right)-5\left(x+9\right)\)

=\(\left(x-5\right)\left(x+9\right)\)

Bokura ga ita
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 8 2016 lúc 7:23

Phân tích đa thức thành nhân tử:

         x2 + 2xy +y2 -3x - 3y -10

         =(x+2xy +y2)- (3x+ 3y)-10

          =(x+y)2 - 3.(x+y)-10

           =(x+y).(x+y-3)-10 vui

 

dai luong
Xem chi tiết
Linh Trần
Xem chi tiết
Anh Đức
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
31 tháng 10 2020 lúc 6:20

Bài 1.

Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )

= [ ( x + 2 ) - ( x - 2 ) ]2

= ( x + 2 - x + 2 )2

= 42 = 16

=> B không phụ thuộc vào x

Vậy với x = -4 thì B vẫn bằng 16

Bài 2.

4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2

Bài 3.

Ta có : \(A=\frac{3}{2}x^2+2x+3\)

\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)

\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)

Dấu "=" xảy ra khi x = -2/3

=> MinA = 7/3 <=> x = -2/3

Khách vãng lai đã xóa
vu thi thuy
Xem chi tiết
Nguyễn Khánh
Xem chi tiết
Akai Haruma
18 tháng 12 2023 lúc 20:16

Bài 1:

a. $3x^3-12x^2+12x=3x(x^2-4x+4)=3x(x-2)^2$

b. $x^2-25+4xy+4y^2=(x^2+4xy+4y^2)-25=(x+2y)^2-5^2=(x+2y-5)(x+2y+5)$

c. $4x^3-x=x(4x^2-1)=x[(2x)^2-1^2]=x(2x-1)(2x+1)$

d. $x^2-x+2y-4y^2=(x^2-4y^2)-(x-2y)=(x-2y)(x+2y)-(x-2y)=(x-2y)(x+2y+1)$

Akai Haruma
18 tháng 12 2023 lúc 20:19

Bài 2: 

a. $3x(x-1)+x-1=0$

$\Leftrightarrow (x-1)(3x+1)=0$

$\Leftrightarrow x-1=0$ hoặc $3x+1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1}{3}$

b. $x(2x+1)-4x^2+1=0$

$\Leftrightarrow x(2x+1)-(4x^2-1)=0$

$\Leftrightarrow x(2x+1)-(2x-1)(2x+1)=0$

$\Leftrightarrow (2x+1)[x-(2x-1)]=0$

$\Leftrightarrow (2x+1)(-x+1)=0$

$\Leftrightarrow 2x+1=0$ hoặc $-x+1=0$

$\Leftrightarrow x=\frac{-1}{2}$ hoặc $x=1$

Akai Haruma
18 tháng 12 2023 lúc 20:21

Bài 3: 

Ta thấy: $EF\parallel AB; AB\perp AC\Rightarrow EF\perp AC$

Vậy $DE\perp AB, EF\perp AC\Rightarrow \widehat{EDA}=\widehat{EFA}=90^0$

Tứ giác $ADEF$ có: $\widehat{A}=\widehat{EDA}=\widehat{EFA}=90^0$ nên là hcn (đpcm)