phân tích thành nhân tử x^2-3x+2
tìm giá trị nhỏ nhất A=4x^2+4x-1
Phân tích thành nhân tử
(3x+2)^2-(x-6)^2
Tìm giá trị nhỏ nhất
A= x^2+2y^2+2xy-2y+2021
1) \(\left(3x+2\right)^2-\left(x-6\right)^2=\left(3x+2-x+6\right)\left(3x+2+x-6\right)=\left(2x+8\right)\left(4x-4\right)=8\left(x+4\right)\left(x-1\right)\)
2) \(A=x^2+2y^2+2xy-2y+2021=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2020=\left(x+y\right)^2+\left(y-1\right)^2+2020\ge2020\)
\(minA=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\left(3x+2\right)^2-\left(x-6\right)^2=\left(3x+2-x+6\right)\left(3x+2+x-6\right)=\left(2x+8\right)\left(4x-4\right)=2.\left(x+4\right).4\left(x-1\right)=8\left(x-1\right)\left(x+4\right)\)
Bài 1:
Ta có: \(\left(3x+2\right)^2-\left(x-6\right)^2\)
\(=\left(3x+2-x+6\right)\left(3x+2+x-6\right)\)
\(=\left(2x+8\right)\left(4x-4\right)\)
\(=8\left(x+4\right)\left(x-1\right)\)
3A. Tính giá trị biểu thức: a) A = (x²-3x² + 3x)² -2(x²-3x² + 3x)+1 tại x= 11; b) B=(x-2y)(x² + 2xy + 4y²)-6xy(x-2y) tai x=3;y=; 5A. Phân tích đa thức thành nhân tử a) x² +1-2x²; c) y²-4x² + 4x-1; b)x²-y²-5y+5x; d) x (2+x)²-(x+2)+1-x² 6A. Phân tích đa thức thành nhân tử: (a) x² −8x+7; b) 2x² -5x+2; c) x²-5x² +8x-4; d) x² +64.
1)a tìm giá trị nhỏ nhất của biểu thức A = x2 - 6x + 2023
b chứng minh biểu thức sau ko phụ thuộc vào biến x
B= ( 3x + 5 )2 + (3x-5)2 -2(3x+5) (3x-5)
2) phân tích đa thức thành nhân tử
x2 + 4x - 45
Bài 1 :
a) \(x^2-6x+2023\)
\(=x^2-2\cdot x\cdot3+3^2+2014\)
\(=\left(x-3\right)^2+2014\ge2014\forall x\)
Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(B=\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)
Dễ thấy đây là HĐT thứ 2
\(B=\left(3x-5-3x-5\right)^2\)
\(B=\left(-10\right)^2\)
\(B=100\)
=> tự kết luận
Bài 2 :
\(x^2+4x-45\)
\(=x^2+9x-5x-45\)
\(=x\left(x+9\right)-5\left(x+9\right)\)
\(=\left(x+9\right)\left(x-5\right)\)
1a) A=x2 - 6x + 9 +2014
A= (x-3)2 + 2014
ta có: (x-3)2\(\ge\)0\(\forall x\)
\(\Rightarrow\left(x+3\right)^2+2014\ge2014\)
Dấu "=" xảy ra <=> (x+3)2 = 0
<=> x+3=0
<=> x = -3
Vậy Amin=2014 <=> x = -3
b) B= \(\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)
= \(\left(3x+5-3x+5\right)^2\)
= 52 = 25
2)\(x^2+4x-45\)
= \(x^2+9x-5x-45\)
=\(x\left(x+9\right)-5\left(x+9\right)\)
=\(\left(x-5\right)\left(x+9\right)\)
Thực hiện phép tính:
2^16 - ( 2 + 1)(2^2 + 1 )(2^4 + 1)(2^8 + 1)
Phân tích đa thức thành nhân tử:
x2 + 2xy +y2 - 3x - 3y -10
Tìm giá trị nhỏ nhất của: A = (4x2-2x+1)/x2
Phân tích đa thức thành nhân tử:
x2 + 2xy +y2 -3x - 3y -10
=(x2 +2xy +y2)- (3x+ 3y)-10
=(x+y)2 - 3.(x+y)-10
=(x+y).(x+y-3)-10
câu 1 :Phân tích đa thức thành nhân tử
a) x^2-16x-y^2+9
b)4x^4+1
câu 2: Tìm giá trị lớn nhất, nhỏ nhất (a,b là nhỏ , c,d là lớn)
a) x^2-2x+3
b)
a) phân tích thành nhân tử
-3x2-2x+1
b) tìm giá trị nhỏ nhất của biểu thức :A=5x=x2 - 4/3
c) tìm giá trị lớn nhất của biểu thức : B = 1/3 - x - 4x2
d) chứng minh rằng
1)1/4x2+x+14>0
2) -3 -9x2 +6x<0
giúp mk vs thanks nhiều ạ
rút gọn và tính giá trị biểu thức :B=(x+2)^2+(x-2)^2-2(x+2)(x-2)với x=-4
phân tích đa thức thành nhân tử:4x^2-4x+1
tìm giá trị lớn nhất của A=3/2x^2+2x+3
Bài 1.
Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )
= [ ( x + 2 ) - ( x - 2 ) ]2
= ( x + 2 - x + 2 )2
= 42 = 16
=> B không phụ thuộc vào x
Vậy với x = -4 thì B vẫn bằng 16
Bài 2.
4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2
Bài 3.
Ta có : \(A=\frac{3}{2}x^2+2x+3\)
\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)
\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)
Dấu "=" xảy ra khi x = -2/3
=> MinA = 7/3 <=> x = -2/3
1/ Cho x+y=4 ; x2+y2=17
a. Tính xy b. tính (x-y)3
2/ Tìm giá trị nhỏ nhất của : A=9x2-10x+5
3/ Tìm x
a. x(3-2x)+(2x-1)(x+3)=5
b. x3-5x2+4x=0
4/ phân tích đa thức thành nhân tử
a. -4x2+y2-4x-1
b. 3x2y-4x2-3xy+4x
Bài 1:
1) phân tích đa thức thành nhân tử
a) 3x^3-12x^2+12x
b) x^2-25+4xy+4y^2
c) 4x^3-x
d) x^2-x+2y-4y^2
2) tìm giá trị của x biết:
a) 3x(x-1)+x-1=0
b) x(2x+1)-4x^2+1=0
Bài 2: cho tam giác ABC vuông tại A (AB<AC), D là trung điểm của AB. Kẻ DE vuông góc với AB ( E∈BC). Đường thẳng qua E song song với AB cắt AC tại F. Chứng minh tứ giác ADEF là hình chữ nhật. ( vẽ cả hình ạ)
Bài 1:
a. $3x^3-12x^2+12x=3x(x^2-4x+4)=3x(x-2)^2$
b. $x^2-25+4xy+4y^2=(x^2+4xy+4y^2)-25=(x+2y)^2-5^2=(x+2y-5)(x+2y+5)$
c. $4x^3-x=x(4x^2-1)=x[(2x)^2-1^2]=x(2x-1)(2x+1)$
d. $x^2-x+2y-4y^2=(x^2-4y^2)-(x-2y)=(x-2y)(x+2y)-(x-2y)=(x-2y)(x+2y+1)$
Bài 2:
a. $3x(x-1)+x-1=0$
$\Leftrightarrow (x-1)(3x+1)=0$
$\Leftrightarrow x-1=0$ hoặc $3x+1=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{-1}{3}$
b. $x(2x+1)-4x^2+1=0$
$\Leftrightarrow x(2x+1)-(4x^2-1)=0$
$\Leftrightarrow x(2x+1)-(2x-1)(2x+1)=0$
$\Leftrightarrow (2x+1)[x-(2x-1)]=0$
$\Leftrightarrow (2x+1)(-x+1)=0$
$\Leftrightarrow 2x+1=0$ hoặc $-x+1=0$
$\Leftrightarrow x=\frac{-1}{2}$ hoặc $x=1$
Bài 3:
Ta thấy: $EF\parallel AB; AB\perp AC\Rightarrow EF\perp AC$
Vậy $DE\perp AB, EF\perp AC\Rightarrow \widehat{EDA}=\widehat{EFA}=90^0$
Tứ giác $ADEF$ có: $\widehat{A}=\widehat{EDA}=\widehat{EFA}=90^0$ nên là hcn (đpcm)